Skip to main content
Mathematics LibreTexts

0.9: Indefinite Integrals of Elementary Functions

  • Page ID
    96122
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    From our known derivatives of elementary functions, we can determine some simple indefinite integrals. The power rule gives us

    \[\int x^ndx=\frac{x^{n+1}}{n+1}+c,\quad n\neq -1.\nonumber \]

    When \(n = −1\), and \(x\) is positive, we have

    \[\int\frac{1}{x}dx=\ln x+c.\nonumber \]

    If \(x\) is negative, using the chain rule we have

    \[\frac{d}{dx}\ln (-x)=\frac{1}{x}.\nonumber \]

    Therefore, since

    \[|x|=\left\{\begin{array}{ll}-x&\text{if }x<0; \\ x&\text{if }x>0,\end{array}\right.\nonumber \]

    we can generalize our indefinite integral to strictly positive or strictly negative \(x\):

    \[\int\frac{1}{x}dx=\ln |x|+c.\nonumber \]

    Trigonometric functions can also be integrated:

    \[\int\cos xdx=\sin x+c,\quad\int\sin xdx=-\cos x+c.\nonumber \]

    Easily proved identities are an addition rule:

    \[\int (f(x)+g(x))dx=\int f(x)dx+\int g(x)dx;\nonumber \]

    and multiplication by a constant:

    \[\int Af(x)dx=A\int f(x)dx.\nonumber \]

    This permits integration of functions such as

    \[\int (x^2+7x+2)dx=\frac{x^3}{3}+\frac{7x^2}{2}+2x+c,\nonumber \]

    and

    \[\int (5\cos x+\sin x)dx=5\sin x-\cos x+c.\nonumber \]


    This page titled 0.9: Indefinite Integrals of Elementary Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Jeffrey R. Chasnov via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.