Skip to main content
Mathematics LibreTexts

3.2: Linear Independence

  • Page ID
    96151
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    View Linear Independence on YouTube

    A set of vectors, \(\{u_1,\: u_2,\cdots , u_n\}\), are said to be linearly independent if for any scalars \(c_1,\: c_2,\cdots , c_n\), the equation

    \[c_1\text{u}_1+c_2\text{u}_2+\cdots +c_n\text{u}_n=0\nonumber \]

    has only the solution \(c_1 = c_2 =\cdots = c_n = 0\). What this means is that one is unable to write any of the vectors \(\text{u}_1,\: \text{u}_2,\cdots , \text{u}_n\) as a linear combination of any of the other vectors. For instance, if there was a solution to the above equation with \(c_1\neq 0\), then we could solve that equation for \(\text{u}_1\) in terms of the other vectors with nonzero coefficients.

    As an example consider whether the following three three-by-one column vectors are linearly independent:

    \[\text{u}=\left(\begin{array}{c}1\\0\\0\end{array}\right),\quad\text{v}=\left(\begin{array}{c}0\\1\\0\end{array}\right),\quad\text{w}=\left(\begin{array}{c}2\\3\\0\end{array}\right).\nonumber \]

    Indeed, they are not linearly independent, that is, they are linearly dependent, because \(\text{w}\) can be written in terms of \(\text{u}\) and \(\text{v}\). In fact, \(\text{w} = 2\text{u} + 3\text{v}\). Now consider the three three-by-one column vectors given by

    \[\text{u}=\left(\begin{array}{c}1\\0\\0\end{array}\right),\quad\text{v}=\left(\begin{array}{c}0\\1\\0\end{array}\right),\quad\text{w}=\left(\begin{array}{c}0\\0\\1\end{array}\right).\nonumber \]

    These three vectors are linearly independent because you cannot write any one of these vectors as a linear combination of the other two. If we go back to our definition of linear independence, we can see that the equation

    \[a\text{u}+b\text{v}+c\text{w}=\left(\begin{array}{c}a\\b\\c\end{array}\right)=\left(\begin{array}{c}0\\0\\0\end{array}\right)\nonumber \]

    has as its only solution \(a=b=c=0\).


    This page titled 3.2: Linear Independence is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Jeffrey R. Chasnov via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.