Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

12.3E: Laplace's Equation in Rectangular Coordinates (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

Q12.3.1

In Exercises 12.3.1-12.3.16 apply the definition developed in Example 12.3.1 to solve the boundary value problem. (Use Theorem 11.3.5 where it applies.) Graph the surface u=u(x,y), 0xa, 0yb for Exercises 12.3.3, 12.3.9, and 12.3.13.

1. uxx+uyy=0,0<x<1,0<y<1,
u(x,0)=x(1x),u(x,1)=0,0x1,
u(0,y)=0,u(1,y)=0,0y1

2. uxx+uyy=0,0<x<2,0<y<3,
u(x,0)=x2(2x),u(x,3)=0,0x2,
u(0,y)=0,u(2,y)=0,0y3

3. uxx+uyy=0,0<x<2,0<y<2,
u(x,0)={x,0x1,2x,1x2,u(x,2)=0,0x2,
u(0,y)=0,u(2,y)=0,0y2

4. uxx+uyy=0,0<x<π,0<y<1,
u(x,0)=xsinx,u(x,π)=0,0xπ,
u(0,y)=0,u(π,y)=0,0y1

5. uxx+uyy=0,0<x<3,0<y<2,
u(x,0)=0,uy(x,2)=x2,0x3,
ux(0,y)=0,ux(3,y)=0,0y2

6. uxx+uyy=0,0<x<1,0<y<2,
u(x,0)=0,uy(x,2)=1x,0x1,
ux(0,y)=0,ux(1,y)=0,0y2

7. uxx+uyy=0,0<x<2,0<y<2,
u(x,0)=0,uy(x,2)=x24,0x2,
ux(0,y)=0,ux(2,y)=0,0y2

8. uxx+uyy=0,0<x<1,0<y<1,
u(x,0)=0,uy(x,1)=(x1)2,0x1,
ux(0,y)=0,ux(1,y)=0,0y1

9. uxx+uyy=0,0<x<3,0<y<2,
u(x,0)=0,uy(x,2)=0,0x3,
u(0,y)=y(4y),ux(3,y)=0,0y2

10. uxx+uyy=0,0<x<2,0<y<1,
u(x,0)=0,uy(x,1)=0,0x2,
u(0,y)=y2(32y),ux(2,y)=0,0y1

11. uxx+uyy=0,0<x<2,0<y<2,
u(x,0)=0,uy(x,2)=0,0x2,
u(0,y)=(y2)3+8,ux(2,y)=0,0y2

12. uxx+uyy=0,0<x<3,0<y<1,
u(x,0)=0,uy(x,1)=0,0x3,
u(0,y)=y(2y29y+12),ux(3,y)=0,0y1

13. uxx+uyy=0,0<x<1,0<y<π,
uy(x,0)=0,u(x,π)=0,0x1,
ux(0,y)=0,ux(1,y)=siny,0yπ

14. uxx+uyy=0,0<x<2,0<y<3,
uy(x,0)=0,u(x,3)=0,0x2,
ux(0,y)=0,ux(2,y)=y(3y),0y3

15. uxx+uyy=0,0<x<1,0<y<π,
uy(x,0)=0,u(x,π)=0,0x1,
ux(0,y)=0,ux(1,y)=π2y2,0yπ

16. uxx+uyy=0,0<x<1,0<y<1,
uy(x,0)=0,u(x,1)=0,0x1,
ux(0,y)=0,ux(1,y)=1y3,0y1

Q12.3.2

In Exercises 12.3.17-12.3.28 define the formal solution of uxx+uyy=0,0<x<a,0<y<b that satisfies the given boundary conditions for general a,b, and f or g. Then solve the boundary value problem for the specified a,b, and f or g. (Use Theorem 11.3.5 where it applies.) Graph the surface u=u(x,y),0xa,0yb for Exercises 12.3.17, 12.3.23, and 12.3.25.

17. u(x,0)=0,u(x,b)=f(x),0<x<a,u(0,y)=0,u(a,y)=0,0<y<ba=3,b=2,f(x)=x(3x)

18. u(x,0)=f(x),u(x,b)=0,0<x<a,ux(0,y)=0,ux(a,y)=0,0<y<ba=2,b=1,f(x)=x2(x2)2

19. u(x,0)=f(x),u(x,b)=0,0<x<a,ux(0,y)=0,u(a,y)=0,0<y<ba=1,b=2,f(x)=3x34x2+1

20. u(x,0)=f(x),u(x,b)=0,0<x<a,u(0,y)=0,ux(a,y)=0,0<y<ba=3,b=2,f(x)=x(6x)

21. u(x,0)=f(x),uy(x,b)=0,0<x<a,u(0,y)=0,u(a,y)=0,0<y<ba=π,b=2,f(x)=x(π2x2)

22. uy(x,0)=0,u(x,b)=f(x),0<x<a,ux(0,y)=0,ux(a,y)=0,0<y<ba=π,b=1,f(x)=x2(xπ)2

23. uy(x,0)=f(x),u(x,b)=0,0<x<a,u(0,y)=0,u(a,y)=0,0<y<ba=π,b=1,(f(x)={x,0xπ2,πx,π2xπ

24. u(x,0)=0,u(x,b)=0,0<x<a,ux(0,y)=0,u(a,y)=g(y),0<y<ba=1,b=1,g(y)=y(y32y2+1)

25. uy(x,0)=0,u(x,b)=0,0<x<a,ux(0,y)=0,u(a,y)=g(y),0<y<ba=2,b=2,g(y)=4y2

26. u(x,0)=0,u(x,b)=0,0<x<a,ux(0,y)=0,ux(a,y)=g(y),0<y<ba=1,b=4,(g(y)={y,0y2,4y,2y4

27. u(x,0)=0,uy(x,b)=0,0<x<a,ux(0,y)=g(y),ux(a,y)=0,0<y<ba=1,b=π,g(y)=y2(3π2y)

28. uy(x,0)=0,uy(x,b)=0,0<x<a,ux(0,y)=g(y),u(a,y)=0,0<y<ba=2,b=π,g(y)=y

Q12.3.3

In Exercises 12.3.29-12.3.34 define the bounded formal solution of uxx+uyy=0,0<x<a,y>0 that satisfies the given boundary conditions for general a and f. Then solve the boundary value problem for the specified a and f.

29. u(x,0)=f(x),0<x<a,
ux(0,y)=0,ux(a,y)=0,y>0
a=π f(x)=x2(3π2x)

30. u(x,0)=f(x),0<x<a,
ux(0,y)=0,u(a,y)=0,y>0
a=3,f(x)=9x2

31. u(x,0)=f(x),0<x<a,
u(0,y)=0,ux(a,y)=0,y>0
a=π,f(x)=x(2πx)

32. uy(x,0)=f(x),0<x<a,
u(0,y)=0,u(a,y)=0,y>0
a=π,f(x)=x2(πx)

33. uy(x,0)=f(x),0<x<a,
ux(0,y)=0,u(a,y)=0,y>0
a=7,f(x)=x(7x)

34. uy(x,0)=f(x),0<x<a,
u(0,y)=0,ux(a,y)=0,y>0
a=5,f(x)=x(5x)

Q12.3.4

35. Define the formal solution of the Dirichlet problem

uxx+uyy=0,0<x<a,0<y<b,u(x,0)=f0(x),u(x,b)=f1(x),0xa,u(0,y)=g0(y),u(a,y)=g1(y),0yb

36. Show that the Neumann Problem

uxx+uyy=0,0<x<a,0<y<b,uy(x,0)=f0(x),uy(x,b)=f1(x),0xa,ux(0,y)=g0(y),ux(a,y)=g1(y),0yb

has no solution unless

a0f0(x)dx=a0f1(x)dx=b0g0(y)dy=b0g1(y)dy=0.

In this case it has infinitely many formal solutions. Find them.

37. In this exercise take it as given that the infinite series n=1npeqn converges for all p if q>0, and, where appropriate, use the comparison test for absolute convergence of an infinite series.

Let

u(x,y)=n=1αnsinhnπ(by)/asinhnπb/asinnπxa,

where

αn=2aa0f(x)sinnπxadx

and f is piecewise smooth on [0,a].

  1. Verify the approximations sinhnπ(by)/asinhnπb/aenπy/a,y<b, and coshnπ(by)/asinhnπb/aenπy/a,y<b for large n.
  2. Use (A) to show that u is defined for (x,y) such that 0<y<b.
  3. For fixed y in (0,b), use (A) and Theorem 12.1.2 with z=x to show that ux(x,y)=πan=1nαnsinhnπ(by)/asinhnπb/acosnπxa,<x<.
  4. Starting from the result of (b), use (A) and Theorem 12.1.2 with z=x to show that, for a fixed y in (0,b), uxx(x,y)=π2a2n=1n2αnsinhnπ(by)/asinhnπb/asinnπxa,<x<.
  5. For fixed but arbitrary x, use (B) and Theorem 12.1.2 with z=y to show that uy(x,y)=πan=1nαncoshnπ(by)/asinhnπb/asinnπxa if 0<y0<y<b, where y0 is an arbitrary number in (0,b). Then argue that since y0 can be chosen arbitrarily small, the conclusion holds for all y in (0,b).
  6. Starting from the result of (e), use (A) and Theorem 12.1.2 to show that uyy(x,y)=π2a2n=1n2αnsinhnπ(by)/asinhnπb/asinnπxa,0<y<b.
  7. Conclude that u satisfies Laplace’s equation for all (x,y) such that 0<y<b.
    By repeatedly applying the arguments in (c)–(f), it can be shown that u can be differentiated term by term any number of times with respect to x and/or y if 0<y<b.

This page titled 12.3E: Laplace's Equation in Rectangular Coordinates (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?