12.3E: Laplace's Equation in Rectangular Coordinates (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
Q12.3.1
In Exercises 12.3.1-12.3.16 apply the definition developed in Example 12.3.1 to solve the boundary value problem. (Use Theorem 11.3.5 where it applies.) Graph the surface u=u(x,y), 0≤x≤a, 0≤y≤b for Exercises 12.3.3, 12.3.9, and 12.3.13.
1. uxx+uyy=0,0<x<1,0<y<1,
u(x,0)=x(1−x),u(x,1)=0,0≤x≤1,
u(0,y)=0,u(1,y)=0,0≤y≤1
2. uxx+uyy=0,0<x<2,0<y<3,
u(x,0)=x2(2−x),u(x,3)=0,0≤x≤2,
u(0,y)=0,u(2,y)=0,0≤y≤3
3. uxx+uyy=0,0<x<2,0<y<2,
u(x,0)={x,0≤x≤1,2−x,1≤x≤2,u(x,2)=0,0≤x≤2,
u(0,y)=0,u(2,y)=0,0≤y≤2
4. uxx+uyy=0,0<x<π,0<y<1,
u(x,0)=xsinx,u(x,π)=0,0≤x≤π,
u(0,y)=0,u(π,y)=0,0≤y≤1
5. uxx+uyy=0,0<x<3,0<y<2,
u(x,0)=0,uy(x,2)=x2,0≤x≤3,
ux(0,y)=0,ux(3,y)=0,0≤y≤2
6. uxx+uyy=0,0<x<1,0<y<2,
u(x,0)=0,uy(x,2)=1−x,0≤x≤1,
ux(0,y)=0,ux(1,y)=0,0≤y≤2
7. uxx+uyy=0,0<x<2,0<y<2,
u(x,0)=0,uy(x,2)=x2−4,0≤x≤2,
ux(0,y)=0,ux(2,y)=0,0≤y≤2
8. uxx+uyy=0,0<x<1,0<y<1,
u(x,0)=0,uy(x,1)=(x−1)2,0≤x≤1,
ux(0,y)=0,ux(1,y)=0,0≤y≤1
9. uxx+uyy=0,0<x<3,0<y<2,
u(x,0)=0,uy(x,2)=0,0≤x≤3,
u(0,y)=y(4−y),ux(3,y)=0,0≤y≤2
10. uxx+uyy=0,0<x<2,0<y<1,
u(x,0)=0,uy(x,1)=0,0≤x≤2,
u(0,y)=y2(3−2y),ux(2,y)=0,0≤y≤1
11. uxx+uyy=0,0<x<2,0<y<2,
u(x,0)=0,uy(x,2)=0,0≤x≤2,
u(0,y)=(y−2)3+8,ux(2,y)=0,0≤y≤2
12. uxx+uyy=0,0<x<3,0<y<1,
u(x,0)=0,uy(x,1)=0,0≤x≤3,
u(0,y)=y(2y2−9y+12),ux(3,y)=0,0≤y≤1
13. uxx+uyy=0,0<x<1,0<y<π,
uy(x,0)=0,u(x,π)=0,0≤x≤1,
ux(0,y)=0,ux(1,y)=siny,0≤y≤π
14. uxx+uyy=0,0<x<2,0<y<3,
uy(x,0)=0,u(x,3)=0,0≤x≤2,
ux(0,y)=0,ux(2,y)=y(3−y),0≤y≤3
15. uxx+uyy=0,0<x<1,0<y<π,
uy(x,0)=0,u(x,π)=0,0≤x≤1,
ux(0,y)=0,ux(1,y)=π2−y2,0≤y≤π
16. uxx+uyy=0,0<x<1,0<y<1,
uy(x,0)=0,u(x,1)=0,0≤x≤1,
ux(0,y)=0,ux(1,y)=1−y3,0≤y≤1
Q12.3.2
In Exercises 12.3.17-12.3.28 define the formal solution of uxx+uyy=0,0<x<a,0<y<b that satisfies the given boundary conditions for general a,b, and f or g. Then solve the boundary value problem for the specified a,b, and f or g. (Use Theorem 11.3.5 where it applies.) Graph the surface u=u(x,y),0≤x≤a,0≤y≤b for Exercises 12.3.17, 12.3.23, and 12.3.25.
17. u(x,0)=0,u(x,b)=f(x),0<x<a,u(0,y)=0,u(a,y)=0,0<y<ba=3,b=2,f(x)=x(3−x)
18. u(x,0)=f(x),u(x,b)=0,0<x<a,ux(0,y)=0,ux(a,y)=0,0<y<ba=2,b=1,f(x)=x2(x−2)2
19. u(x,0)=f(x),u(x,b)=0,0<x<a,ux(0,y)=0,u(a,y)=0,0<y<ba=1,b=2,f(x)=3x3−4x2+1
20. u(x,0)=f(x),u(x,b)=0,0<x<a,u(0,y)=0,ux(a,y)=0,0<y<ba=3,b=2,f(x)=x(6−x)
21. u(x,0)=f(x),uy(x,b)=0,0<x<a,u(0,y)=0,u(a,y)=0,0<y<ba=π,b=2,f(x)=x(π2−x2)
22. uy(x,0)=0,u(x,b)=f(x),0<x<a,ux(0,y)=0,ux(a,y)=0,0<y<ba=π,b=1,f(x)=x2(x−π)2
23. uy(x,0)=f(x),u(x,b)=0,0<x<a,u(0,y)=0,u(a,y)=0,0<y<ba=π,b=1,(f(x)={x,0≤x≤π2,π−x,π2≤x≤π
24. u(x,0)=0,u(x,b)=0,0<x<a,ux(0,y)=0,u(a,y)=g(y),0<y<ba=1,b=1,g(y)=y(y3−2y2+1)
25. uy(x,0)=0,u(x,b)=0,0<x<a,ux(0,y)=0,u(a,y)=g(y),0<y<ba=2,b=2,g(y)=4−y2
26. u(x,0)=0,u(x,b)=0,0<x<a,ux(0,y)=0,ux(a,y)=g(y),0<y<ba=1,b=4,(g(y)={y,0≤y≤2,4−y,2≤y≤4
27. u(x,0)=0,uy(x,b)=0,0<x<a,ux(0,y)=g(y),ux(a,y)=0,0<y<ba=1,b=π,g(y)=y2(3π−2y)
28. uy(x,0)=0,uy(x,b)=0,0<x<a,ux(0,y)=g(y),u(a,y)=0,0<y<ba=2,b=π,g(y)=y
Q12.3.3
In Exercises 12.3.29-12.3.34 define the bounded formal solution of uxx+uyy=0,0<x<a,y>0 that satisfies the given boundary conditions for general a and f. Then solve the boundary value problem for the specified a and f.
29. u(x,0)=f(x),0<x<a,
ux(0,y)=0,ux(a,y)=0,y>0
a=π f(x)=x2(3π−2x)
30. u(x,0)=f(x),0<x<a,
ux(0,y)=0,u(a,y)=0,y>0
a=3,f(x)=9−x2
31. u(x,0)=f(x),0<x<a,
u(0,y)=0,ux(a,y)=0,y>0
a=π,f(x)=x(2π−x)
32. uy(x,0)=f(x),0<x<a,
u(0,y)=0,u(a,y)=0,y>0
a=π,f(x)=x2(π−x)
33. uy(x,0)=f(x),0<x<a,
ux(0,y)=0,u(a,y)=0,y>0
a=7,f(x)=x(7−x)
34. uy(x,0)=f(x),0<x<a,
u(0,y)=0,ux(a,y)=0,y>0
a=5,f(x)=x(5−x)
Q12.3.4
35. Define the formal solution of the Dirichlet problem
uxx+uyy=0,0<x<a,0<y<b,u(x,0)=f0(x),u(x,b)=f1(x),0≤x≤a,u(0,y)=g0(y),u(a,y)=g1(y),0≤y≤b
36. Show that the Neumann Problem
uxx+uyy=0,0<x<a,0<y<b,uy(x,0)=f0(x),uy(x,b)=f1(x),0≤x≤a,ux(0,y)=g0(y),ux(a,y)=g1(y),0≤y≤b
has no solution unless
∫a0f0(x)dx=∫a0f1(x)dx=∫b0g0(y)dy=∫b0g1(y)dy=0.
In this case it has infinitely many formal solutions. Find them.
37. In this exercise take it as given that the infinite series ∑∞n=1npe−qn converges for all p if q>0, and, where appropriate, use the comparison test for absolute convergence of an infinite series.
Let
u(x,y)=∞∑n=1αnsinhnπ(b−y)/asinhnπb/asinnπxa,
where
αn=2a∫a0f(x)sinnπxadx
and f is piecewise smooth on [0,a].
- Verify the approximations sinhnπ(b−y)/asinhnπb/a≈e−nπy/a,y<b, and coshnπ(b−y)/asinhnπb/a≈e−nπy/a,y<b for large n.
- Use (A) to show that u is defined for (x,y) such that 0<y<b.
- For fixed y in (0,b), use (A) and Theorem 12.1.2 with z=x to show that ux(x,y)=πa∞∑n=1nαnsinhnπ(b−y)/asinhnπb/acosnπxa,−∞<x<∞.
- Starting from the result of (b), use (A) and Theorem 12.1.2 with z=x to show that, for a fixed y in (0,b), uxx(x,y)=−π2a2∞∑n=1n2αnsinhnπ(b−y)/asinhnπb/asinnπxa,−∞<x<∞.
- For fixed but arbitrary x, use (B) and Theorem 12.1.2 with z=y to show that uy(x,y)=−πa∞∑n=1nαncoshnπ(b−y)/asinhnπb/asinnπxa if 0<y0<y<b, where y0 is an arbitrary number in (0,b). Then argue that since y0 can be chosen arbitrarily small, the conclusion holds for all y in (0,b).
- Starting from the result of (e), use (A) and Theorem 12.1.2 to show that uyy(x,y)=π2a2∞∑n=1n2αnsinhnπ(b−y)/asinhnπb/asinnπxa,0<y<b.
- Conclude that u satisfies Laplace’s equation for all (x,y) such that 0<y<b.
By repeatedly applying the arguments in (c)–(f), it can be shown that u can be differentiated term by term any number of times with respect to x and/or y if 0<y<b.