Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

12.4E: Laplace's Equation in Polar Coordinates (Exercises)

  • Page ID
    18287
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    [exer:12.4.1] Define the formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad -\pi\le\theta<\pi,\\[4pt] u(\rho_0,\theta)=f(\theta),\quad u(\rho,\theta)=0,\quad -\pi\le\theta<\pi, \end{array}\]

    where \(0<\rho_0<\rho\).

    [exer:12.4.2] Define the formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho_0,\theta)=0,\quad u(\rho,\theta)=f(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u(r,0)=0,\quad u(r,\gamma)=0,\quad \rho_0<r<\rho, \end{array}\]

    where \(0<\gamma<2\pi\) and \(0<\rho_0<\rho\).

    [exer:12.4.3] Define the formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho_0,\theta)=0,\quad u_r(\rho,\theta)=g(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u_\theta(r,0)=0,\quad u_\theta(r,\gamma)=0,\quad \rho_0<r<\rho, \end{array}\]

    where \(0<\gamma<2\pi\) and \(0<\rho_0<\rho\).

    [exer:12.4.4] Define the bounded formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad 0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho,\theta)=f(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u_\theta(r,0)=0,\quad u(r,\gamma)=0,\quad 0<r<\rho, \end{array}\]

    where \(0<\gamma<2\pi\).

    [exer:12.4.5] Define the formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad \rho_0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u_r(\rho_0,\theta)=g(\theta),\quad u_r(\rho,\theta)=0,\quad 0\le\theta\le\gamma,\\[4pt] u(r,0)=0,\quad u_\theta(r,\gamma)=0,\quad \rho_0<r<\rho, \end{array}\]

    where \(0<\gamma<2\pi\) and \(0<\rho_0<\rho\).

    [exer:12.4.6] Define the bounded formal solution of

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad 0<r<\rho,\quad 0<\theta<\gamma,\\[4pt] u(\rho,\theta)=f(\theta),\quad 0\le\theta\le\gamma,\\[4pt] u_\theta(r,0)=0,\quad u_\theta(r,\gamma)=0,\quad 0<r<\rho, \end{array}\]

    where \(0<\gamma<2\pi\).

    [exer:12.4.7] Show that the Neumann problem

    \[\begin{array}{c} \ u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\theta\theta}=0,\quad 0<r<\rho,\quad -\pi\le\theta<\pi,\\[4pt] u_r(\rho,\theta)=f(\theta),\quad -\pi\le\theta<\pi \end{array}\]

    has no bounded formal solution unless \(\int_{-\pi}^\pi f(\theta)\,d\theta=0\). In this case it has infinitely many solutions. Find those solutions.