Skip to main content
Mathematics LibreTexts

7.3.2: Boundary Value Problems: Neumann Problem

  • Page ID
    2187
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The Neumann problem (second boundary value problem) is to find a solution \(u\in C^2(\Omega)\cap C^1(\overline{\Omega})\) of
    \begin{eqnarray}
    \label{N1}\tag{7.3.2.1}
    \triangle u&=&0\ \ \mbox{in}\ \Omega\\
    \label{N2} \tag{7.3.2.2}
    \frac{\partial u}{\partial n}&=&\Phi\ \ \mbox{on}\ \partial\Omega,
    \end{eqnarray}
    where \(\Phi\) is given and continuous on \(\partial\Omega\).

    Proposition 7.5. Assume \(\Omega\) is bounded, then a solution to the Dirichlet problem is in the class \(u\in C^2(\overline{\Omega})\) uniquely determined up to a constant.

    Proof. Exercise. Hint: Multiply the differential equation \(\triangle w=0\) by \(w\) and integrate the result over \(\Omega\).
    Another proof under the weaker assumption \(u\in C^1(\overline{\Omega})\cap C^2(\Omega)\) follows from the Hopf boundary point lemma, see Lecture Notes: Linear Elliptic Equations of Second Order, for instance.

    Contributors and Attributions


    This page titled 7.3.2: Boundary Value Problems: Neumann Problem is shared under a not declared license and was authored, remixed, and/or curated by Erich Miersemann.

    • Was this article helpful?