Skip to main content
Mathematics LibreTexts

4.2: The Principle of Superposition

  • Page ID
    90407
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    View tutorial on YouTube

    Consider the linear second-order homogeneous ode:

    \[\label{eq:1}\overset{..}{x}+p(t)\overset{.}{x}+q(t)x=0;\] and suppose that \(x = X_1(t)\) and \(x = X_2(t)\) are solutions to \(\eqref{eq:1}\). We consider a linear combination of \(X_1\) and \(X_2\) by letting \[\label{eq:2}X(t)=c_1X_1(t)+c_2X_2(t),\] with \(c_1\) and \(c_2\) constants. The principle of superposition states that \(x = X(t)\) is also a solution of \(\eqref{eq:1}\). To prove this, we compute \[\begin{aligned} \overset{..}{X}+p\overset{.}{X}+qX&=c_1\overset{..}{X}_1+c_2\overset{..}{X}_2+p(c_1\overset{.}{X}_1+c_2\overset{.}{X}_2)+q(c_1X_1+c_2X_2) \\ &=c_1(\overset{..}{X}_1+p\overset{.}{X}_1+qX_1)+c_2(\overset{..}{X}_2+p\overset{.}{X}_2+qX_2) \\ &=c_1\times 0+c_2\times 0 \\ &=0,\end{aligned}\] since \(X_1\) and \(X_2\) were assumed to be solutions of \(\eqref{eq:1}\). We have therefore shown that any linear combination of solutions to the homogeneous linear second-order ode is also a solution.


    This page titled 4.2: The Principle of Superposition is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Jeffrey R. Chasnov via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?