Appendix B: Table of Laplace Transforms
( \newcommand{\kernel}{\mathrm{null}\,}\)
The function u is the Heaviside function, δ is the Dirac delta function, and
Γ(t)=∫∞0e−ττt−1dτ,erf(t)=2√π∫t0e−τ2dτ,erfc(t)=1−erf(t).
Table AppendixB.1
f(t) | F(s)=L{f(t)}=∫∞0e−stf(t)dt |
---|---|
C | Cs |
t | 1s2 |
t2 | 2s3 |
tn | n!sn+1 |
tp(p>0) | Γ(p+1)sp+1 |
e−at | 1s+a |
sin(ωt) | ωs2+ω2 |
cos(ωt) | ss2+ω2 |
sinh(ωt) | ωs2−ω2 |
cosh(ωt) | ss2−ω2 |
u(t−a) | e−ass |
δ(t) | 1 |
δ(t−a) | e−as |
erf(t2a) | 1se(as)2erfc(as) |
1√πtexp(−a24t)(a≥0) | e−as√s |
1√πt−aea2terfc(a√t)(a>0) | 1√s+a |
af(t)+bg(t) | aF(s)+bG(s) |
f(at)(a>0) | 1aF(sa) |
f(t−a)u(t−a) | e−asF(s) |
e−atf(t) | F(s+a) |
g′(t) | sG(s)−g(0) |
g″(t) | s2G(s)−sg(0)−g′(0) |
g‴(t) | s3G(s)−s2g(0)−sg′(0)−g″(0) |
g(n)(t) | snG(s)−sn−1g(0)−⋯−g(n−1)(0) |
(f∗g)(t)=∫t0f(τ)g(t−τ)dτ | F(s)G(s) |
tf(t) | −F′(s) |
tnf(t) | (−1)nF(n)(s) |
∫t0f(τ)dτ | 1sF(s) |
f(t)t | ∫∞sF(σ)dσ |