# 1.3E: Direction Fields for First Order Equations (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Exercises for Section 1.3

In Exercises 1–11 a direction field is drawn for the given equation. Sketch some integral curves.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

In Exercises 12 - 22 construct a direction field and plot some integral curves in the indicated rectangular region.

12. $$y'=y(y-1); \quad \{-1\le x\le 2,\ -2\le y\le2\}$$

13. $$y'=2-3xy; \quad \{-1\le x\le 4,\ -4\le y\le4\}$$

14. $$y'=xy(y-1); \quad \{-2\le x\le2,\ -4\le y\le 4\}$$

15. $$y'=3x+y; \quad \{-2\le x\le2,\ 0\le y\le 4\}$$

16. $$y'=y-x^3; \quad \{-2\le x\le2,\ -2\le y\le 2\}$$

17. $$y'=1-x^2-y^2; \quad \{-2\le x\le2,\ -2\le y\le 2\}$$

18. $$y'=x(y^2-1); \quad \{-3\le x\le3,\ -3\le y\le 2\}$$

19. $$y'= {x\over y(y^2-1)}; \quad \{-2\le x\le2,\ -2\le y\le 2\}$$

20. $$y'= {xy^2\over y-1}; \quad \{-2\le x\le2,\ -1\le y\le 4\}$$

21. $$y'= {x(y^2-1)\over y}; \quad \{-1\le x\le1,\ -2\le y\le 2\}$$

22. $$y'=- {x^2+y^2\over1-x^2-y^2}; \quad \{-2\le x\le2,\ -2\le y\le 2\}$$

23. By suitably renaming the constants and dependent variables in the equations

$T' = -k(T-T_m) \tag{A}$

and

$G'=-\lambda G+r\tag{B}$

discussed in Section 1.2 in connection with Newton’s law of cooling and absorption of glucose in the body, we can write both as

$y'=- ay+b, \tag{C}$

where $$a$$ is a positive constant and $$b$$ is an arbitrary constant. Thus, (A) is of the form (C) with $$y=T$$, $$a=k$$, and $$b=kT_m$$, and (B) is of the form (C) with $$y=G$$, $$a=\lambda$$, and $$b=r$$. We’ll encounter equations of the form (C) in many other applications in Chapter 2.

Choose a positive $$a$$ and an arbitrary $$b$$. Construct a direction field and plot some integral curves for (C) in a rectangular region of the form $\{0\le t\le T,\ c\le y\le d\} \nonumber$

of the $$ty$$-plane. Vary $$T$$, $$c$$, and $$d$$ until you discover a common property of all the solutions of (C). Repeat this experiment with various choices of $$a$$ and $$b$$ until you can state this property precisely in terms of $$a$$ and $$b$$.

24. By suitably renaming the constants and dependent variables in the equations

$P'=aP(1-\alpha P) \tag{A}$

and

$I'=rI(S-I) \tag{B}$

discussed in Section 1.1 in connection with Verhulst’s population model and the spread of an epidemic, we can write both in the form

$y'=ay-by^2, \tag{C}$

where $$a$$ and $$b$$ are positive constants. Thus, (A) is of the form (C) with $$y=P$$, $$a=a$$, and $$b=a\alpha$$, and (B) is of the form (C) with $$y=I$$, $$a=rS$$, and $$b=r$$. In Chapter 2 we’ll encounter equations of the form (C) in other applications..

Choose positive numbers $$a$$ and $$b$$. Construct a direction field and plot some integral curves for (C) in a rectangular region of the form $\{0\le t\le T,\ 0\le y\le d\} \nonumber$

of the $$ty$$-plane. Vary $$T$$ and $$d$$ until you discover a common property of all solutions of (C) with $$y(0)>0$$. Repeat this experiment with various choices of $$a$$ and $$b$$ until you can state this property precisely in terms of $$a$$ and $$b$$.

Choose positive numbers $$a$$ and $$b$$. Construct a direction field and plot some integral curves for (C) in a rectangular region of the form $\{0\le t\le T,\ c\le y\le 0\} \nonumber$

of the $$ty$$-plane. Vary $$a$$, $$b$$, $$T$$ and $$c$$ until you discover a common property of all solutions of (C) with $$y(0)<0$$.

You can verify your results later by doing Exercise 2.2.27.

This page titled 1.3E: Direction Fields for First Order Equations (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform.