5.4E: The Method of Undetermined Coefficients I (Exercises)
- Page ID
- 18319
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q5.4.1
In Exercises 5.4.1-5.4.14 find a particular solution.
1. \(y''-3y'+2y=e^{3x}(1+x)\)
2. \(y''-6y'+5y=e^{-3x}(35-8x)\)
3. \(y''-2y'-3y=e^x(-8+3x)\)
4. \(y''+2y'+y=e^{2x}(-7-15x+9x^2)\)
5. \(y''+4y=e^{-x}(7-4x+5x^2)\)
6. \(y''-y'-2y=e^x(9+2x-4x^2)\)
7. \(y''-4y'-5y=-6xe^{-x}\)
8. \(y''-3y'+2y=e^x(3-4x)\)
9. \(y''+y'-12y=e^{3x}(-6+7x)\)
10. \(2y''-3y'-2y=e^{2x}(-6+10x)\)
11. \(y''+2y'+y=e^{-x}(2+3x)\)
12. \(y''-2y'+y=e^x(1-6x)\)
13. \(y''-4y'+4y=e^{2x}(1-3x+6x^2)\)
14. \(9y''+6y'+y=e^{-x/3}(2-4x+4x^2)\)
Q5.4.2
In Exercises 5.4.15-5.4.19 find the general solution.
15. \(y''-3y'+2y=e^{3x}(1+x)\)
16. \(y''-6y'+8y=e^x(11-6x)\)
17. \(y''+6y'+9y=e^{2x}(3-5x)\)
18. \(y''+2y'-3y=-16xe^x\)
19. \(y''-2y'+y=e^x(2-12x)\)
Q5.4.3
In Exercises 5.4.20-5.4.23 solve the initial value problem and plot the solution.
20. \(y''-4y'-5y=9e^{2x}(1+x), \quad y(0)=0,\quad y'(0)=-10\)
21. \(y''+3y'-4y=e^{2x}(7+6x), \quad y(0)=2,\quad y'(0)=8\)
22. \(y''+4y'+3y=-e^{-x}(2+8x), \quad y(0)=1,\quad y'(0)=2\)
23. \(y''-3y'-10y=7e^{-2x}, \quad y(0)=1,\quad y'(0)=-17\)
Q5.4.4
In Exercises 5.4.24-5.4.29 use the principle of superposition to find a particular solution.
24. \(y''+y'+y=xe^x+e^{-x}(1+2x)\)
25. \(y''-7y'+12y=-e^x(17-42x)-e^{3x}\)
26. \(y''-8y'+16y=6xe^{4x}+2+16x+16x^2\)
27. \(y''-3y'+2y=-e^{2x}(3+4x)-e^x\)
28. \(y''-2y'+2y=e^x(1+x)+e^{-x}(2-8x+5x^2)\)
29. \(y''+y=e^{-x}(2-4x+2x^2)+e^{3x}(8-12x-10x^2)\)
Q5.4.5
30.
- Prove that \(y\) is a solution of the constant coefficient equation \[ay''+by'+cy=e^{\alpha x}G(x) \tag{A} \] if and only if \(y=ue^{\alpha x}\), where \(u\) satisfies \[au''+p'(\alpha)u'+p(\alpha)u=G(x) \tag{B} \] and \(p(r)=ar^2+br+c\) is the characteristic polynomial of the complementary equation \[ay''+by'+cy=0.\nonumber \] For the rest of this exercise, let \(G\) be a polynomial. Give the requested proofs for the case where \[G(x)=g_0+g_1x+g_2x^2+g_3x^3.\nonumber \]
- Prove that if \(e^{\alpha x}\) isn’t a solution of the complementary equation then (B) has a particular solution of the form \(u_p=A(x)\), where \(A\) is a polynomial of the same degree as \(G\), as in Example 5.4.4. Conclude that (A) has a particular solution of the form \(y_p=e^{\alpha x}A(x)\).
- Show that if \(e^{\alpha x}\) is a solution of the complementary equation and \(xe^{\alpha x}\) isn’t , then (B) has a particular solution of the form \(u_p=xA(x)\), where \(A\) is a polynomial of the same degree as \(G\), as in Example 5.4.5. Conclude that (A) has a particular solution of the form \(y_p=xe^{\alpha x}A(x)\).
- Show that if \(e^{\alpha x}\) and \(xe^{\alpha x}\) are both solutions of the complementary equation then (B) has a particular solution of the form \(u_p=x^2A(x)\), where \(A\) is a polynomial of the same degree as \(G\), and \(x^2A(x)\) can be obtained by integrating \(G/a\) twice, taking the constants of integration to be zero, as in Example 5.4.6. Conclude that (A) has a particular solution of the form \(y_p=x^2e^{\alpha x}A(x)\).
Q5.4.6
Exercises 5.4.31–5.4.36 treat the equations considered in Examples 5.4.1–5.4.6. Substitute the suggested form of \(y_{p}\) into the equation and equate the resulting coefficients of like functions on the two sides of the resulting equation to derive a set of simultaneous equations for the coefficients in \(y_{p}\). Then solve for the coefficients to obtain \(y_{p}\). Compare the work you’ve done with the work required to obtain the same results in Examples 5.4.1–5.4.6.
31. Compare with Example 5.4.1:
\[y''-7y'+12y=4e^{2x};\quad y_p=Ae^{2x}\nonumber \]
32. Compare with Example 5.4.2:
\[y''-7y'+12y=5e^{4x};\quad y_p=Axe^{4x}\nonumber \]
33. Compare with Example 5.4.3:
\[y''-8y'+16y=2e^{4x};\quad y_p=Ax^2e^{4x}\nonumber \]
34. Compare with Example 5.4.4:
\[y''-3y'+2y=e^{3x}(-1+2x+x^2),\quad y_p=e^{3x}(A+Bx+Cx^2)\nonumber \]
35. Compare with Example 5.4.5:
\[y''-4y'+3y=e^{3x}(6+8x+12x^2),\quad y_p=e^{3x}(Ax+Bx^2+Cx^3)\nonumber \]
36. Compare with Example 5.4.6:
\[4y''+4y'+y=e^{-x/2}(-8+48x+144x^2),\quad y_p=e^{-x/2}(Ax^2+Bx^3+Cx^4)\nonumber \]
Q5.4.7
37. Write \(y=ue^{\alpha x}\) to find the general solution.
- \(y''+2y'+y={e^{-x}\over\sqrt x}\)
- \(y''+6y'+9y=e^{-3x}\ln x\)
- \(y''-4y'+4y={e^{2x}\over1+x}\)
- \(4y''+4y'+y={4e^{-x/2}\left({1\over x}+x\right)}\)
38. Suppose \(\alpha\ne0\) and \(k\) is a positive integer. In most calculus books integrals like \(\int x^k e^{\alpha x}\,dx\) are evaluated by integrating by parts \(k\) times. This exercise presents another method. Let
\[y=\int e^{\alpha x}P(x)\,dx\nonumber \]
with
\[P(x)=p_0+p_1x+\cdots+p_kx^k\nonumber \]
(where \(p_k \neq 0\)).
- Show that \(y=e^{\alpha x}u\), where \[u'+\alpha u=P(x). \tag{A} \]
- Show that (A) has a particular solution of the form \[u_p=A_0+A_1x+\cdots+A_kx^k,\nonumber \] where \(A_k\), \(A_{k-1}\), …, \(A_0\) can be computed successively by equating coefficients of \(x^k,x^{k-1}, \dots,1\) on both sides of the equation \[u_p'+\alpha u_p=P(x).\nonumber \]
- Conclude that \[\int e^{\alpha x}P(x)\,dx=\left(A_0+A_1x+\cdots+A_kx^k\right)e^{\alpha x} +c,\nonumber \] where \(c\) is a constant of integration.
39. Use the method of Exercise 5.4.38 to evaluate the integral.
- \(\int e^{x}(4+x)dx\)
- \(\int e^{-x}(-1+x^{2})dx\)
- \(\int x^{3}e^{-2x}dx\)
- \(\int e^{x}(1+x)^{2}dx\)
- \(\int e^{3x}(-14+30x+27x^{2})dx\)
- \(\int e^{-x}(1+6x^{2}-14x^{3}+3x^{4})dx\)
40. Use the method suggested in Exercise 5.4.38 to evaluate \(\int x^ke^{\alpha x}\,dx\), where \(k\) is an arbitrary positive integer and \(\alpha\ne0\).