5.6E: Reduction of Order (Exercises)
- Page ID
- 18320
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q5.6.1
In Exercises 5.6.1-5.6.17 find the general solution, given that \(y_1\) satisfies the complementary equation. As a byproduct, find a fundamental set of solutions of the complementary equation.
1. \((2x+1)y''-2y'-(2x+3)y=(2x+1)^2; \quad y_1=e^{-x}\)
2. \(x^2y''+xy'-y={4\over x^2}; \quad y_1=x\)
3. \(x^2y''-xy'+y=x; \quad y_1=x\)
4. \(y''-3y'+2y={1\over1+e^{-x}}; \quad y_1=e^{2x}\)
5. \(y''-2y'+y=7x^{3/2}e^x; \quad y_1=e^x\)
6. \(4x^2y''+(4x-8x^2)y'+(4x^2-4x-1)y=4x^{1/2}e^x(1+4x); \quad y_1=x^{1/2}e^x\)
7. \(y''-2y'+2y=e^x\sec x; \quad y_1=e^x\cos x\)
8. \(y''+4xy'+(4x^2+2)y=8e^{-x(x+2)}; \quad y_1=e^{-x^2}\)
9. \(x^2y''+xy'-4y=-6x-4; \quad y_1=x^2\)
10. \(x^2y''+2x(x-1)y'+(x^2-2x+2)y=x^3e^{2x}; \quad y_1=xe^{-x}\)
11. \(x^2y''-x(2x-1)y'+(x^2-x-1)y=x^2e^x; \quad y_1=xe^x\)
12. \((1-2x)y''+2y'+(2x-3)y=(1-4x+4x^2)e^x; \quad y_1=e^x\)
13. \(x^2y''-3xy'+4y=4x^4; \quad y_1=x^2\)
14. \(2xy''+(4x+1)y'+(2x+1)y=3x^{1/2}e^{-x}; \quad y_1=e^{-x}\)
15. \(xy''-(2x+1)y'+(x+1)y=-e^x; \quad y_1=e^x\)
16. \(4x^2y''-4x(x+1)y'+(2x+3)y=4x^{5/2}e^{2x}; \quad y_1=x^{1/2}\)
17. \(x^2y''-5xy'+8y=4x^2; \quad y_1=x^2\)
Q5.6.2
In Exercises 5.6.18-5.6.30 find a fundamental set of solutions, given that \(y_{1}\) is a solution.
18. \(xy''+(2-2x)y'+(x-2)y=0; \quad y_1=e^x\)
19. \(x^2y''-4xy'+6y=0; \quad y_1=x^2\)
20. \(x^2(\ln |x|)^2y''-(2x \ln |x|)y'+(2+\ln |x|)y=0; \quad y_1=\ln |x|\)
21. \(4xy''+2y'+y=0; \quad y_1=\sin \sqrt{x}\)
22. \(xy''-(2x+2)y'+(x+2)y=0; \quad y_1=e^x\)
23. \(x^2y''-(2a-1)xy'+a^2y=0; \quad y_1=x^a\)
24. \(x^2y''-2xy'+(x^2+2)y=0; \quad y_1=x \sin x\)
25. \(xy''-(4x+1)y'+(4x+2)y=0; \quad y_1=e^{2x}\)
26. \(4x^2(\sin x)y''-4x(x\cos x+\sin x)y'+(2x\cos x+3\sin x)y=0; \quad y_1=x^{1/2}\)
27. \(4x^2y''-4xy'+(3-16x^2)y=0; \quad y_1=x^{1/2}e^{2x}\)
28. \((2x+1)xy''-2(2x^2-1)y'-4(x+1)y=0; \quad y_1=1/x\)
29. \((x^2-2x)y''+(2-x^2)y'+(2x-2)y=0; \quad y_1=e^x\)
30. \(xy''-(4x+1)y'+(4x+2)y=0; \quad y_1=e^{2x}\)
Q5.6.3
In Exercises 5.6.31-5.6.33 solve the initial value problem, given that \(y_{1}\) satisfies the complementary equation.
31. \(x^2y''-3xy'+4y=4x^4,\quad y(-1)=7,\quad y'(-1)=-8; \quad y_1=x^2\)
32. \((3x-1)y''-(3x+2)y'-(6x-8)y=0, \quad y(0)=2,\; y'(0)=3; \quad y_1=e^{2x}\)
33. \((x+1)^2y''-2(x+1)y'-(x^2+2x-1)y=(x+1)^3e^x, \quad y(0)=1,\quad y'(0)=~-1; \quad y_1=(x+1)e^x\)
Q5.6.4
In Exercises 5.6.34 and 5.6.35 solve the initial value problem and graph the solution, given that \(y_{1}\) satisfies the complementary equation.
34. \(x^2y''+2xy'-2y=x^2, \quad y(1)={5\over4},\; y'(1)={3\over2}; \quad y_1=x\)
35. \((x^2-4)y''+4xy'+2y=x+2, \quad y(0)=-{1\over3},\quad y'(0)=-1; \quad y_1={1\over x-2}\)
Q5.6.5
36. Suppose \(p_1\) and \(p_2\) are continuous on \((a,b)\). Let \(y_1\) be a solution of
\[y''+p_1(x)y'+p_2(x)y=0 \tag{A} \]
that has no zeros on \((a,b)\), and let \(x_0\) be in \((a,b)\). Use reduction of order to show that \(y_1\) and
\[y_2(x)=y_1(x)\int^x_{x_0}{1\over y^2_1(t)} \exp \left(-\int^t_{x_0}p_1(s)\, ds\right)\,dt \nonumber \]
form a fundamental set of solutions of (A) on \((a,b)\).
37. The nonlinear first order equation
\[y'+y^2+p(x)y+q(x)=0 \tag{A} \]
is a Riccati equation. (See Exercise 2.4.55.) Assume that \(p\) and \(q\) are continuous.
- Show that \(y\) is a solution of (A) if and only if \(y={z'/z}\), where \[z''+p(x)z'+q(x)z=0. \tag{B} \]
- Show that the general solution of (A) is \[y={c_1z'_1+c_2z'_2\over c_1z_1+c_2z_2}, \tag{C} \] where \(\{z_1,z_2\}\) is a fundamental set of solutions of (B) and \(c_1\) and \(c_2\) are arbitrary constants.
- Does the formula (C) imply that the first order equation (A) has a two–parameter family of solutions? Explain your answer.
38. Use a method suggested by Exercise 5.6.37 to find all solutions. of the equation.
- \(y'+y^2+k^2=0\)
- \(y'+y^2-3y+2=0\)
- \(y'+y^2+5y-6=0\)
- \(y'+y^2+8y+7=0\)
- \(y'+y^2+14y+50=0\)
- \(6y'+6y^2-y-1=0\)
- \(36y'+36y^2-12y+1=0\)
39. Use a method suggested by Exercise 5.6.37 and reduction of order to find all solutions of the equation, given that \(y_1\) is a solution.
- \(x^2(y'+y^2)-x(x+2)y+x+2=0; \quad y_1=1/x\)
- \(y'+y^2+4xy+4x^2+2=0; \quad y_1=-2x\)
- \((2x+1)(y'+y^2)-2y-(2x+3)=0; \quad y_1=-1\)
- \((3x-1)(y'+y^2)-(3x+2)y-6x+8=0; \quad y_1=2\)
- \({x^2(y'+y^2)+xy+x^2- {1\over 4}=0; \quad y_1=-\tan x -{1\over 2x}}\)
- \({x^2(y'+y^2)-7xy+7=0; \quad y_1=1/x}\)
40. The nonlinear first order equation
\[y'+r(x)y^2+p(x)y+q(x)=0 \tag{A} \]
is the generalized Riccati equation. (See Exercise 2.4.55.) Assume that \(p\) and \(q\) are continuous and \(r\) is differentiable.
- Show that \(y\) is a solution of (A) if and only if \(y={z'/rz}\), where \[z''+\left[p(x)-{r'(x)\over r(x)}\right] z'+r(x)q(x)z=0. \tag{B} \]
- Show that the general solution of (A) is \[y={c_1z'_1+c_2z'_2\over r(c_1z_1+c_2z_2)}, \nonumber \] where \(\{z_1,z_2\}\) is a fundamental set of solutions of (B) and \(c_1\) and \(c_2\) are arbitrary constants.