Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

7.5E: Regular Singular Points Euler Equations (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

Q7.4.1

In Exercises 7.4.1-7.4.18 find the general solution of the given Euler equation on (0,โˆž).

1. ๐‘ฅ2โข๐‘ฆโ€ณ +7โข๐‘ฅโข๐‘ฆโ€ฒ +8โข๐‘ฆ =0

2. ๐‘ฅ2โข๐‘ฆโ€ณ โˆ’7โข๐‘ฅโข๐‘ฆโ€ฒ +7โข๐‘ฆ =0

3. ๐‘ฅ2โข๐‘ฆโ€ณ โˆ’๐‘ฅโข๐‘ฆโ€ฒ +๐‘ฆ =0

4. ๐‘ฅ2โข๐‘ฆโ€ณ +5โข๐‘ฅโข๐‘ฆโ€ฒ +4โข๐‘ฆ =0

5. ๐‘ฅ2โข๐‘ฆโ€ณ +๐‘ฅโข๐‘ฆโ€ฒ +๐‘ฆ =0

6. ๐‘ฅ2โข๐‘ฆโ€ณ โˆ’3โข๐‘ฅโข๐‘ฆโ€ฒ +13โข๐‘ฆ =0

7. ๐‘ฅ2โข๐‘ฆโ€ณ +3โข๐‘ฅโข๐‘ฆโ€ฒ โˆ’3โข๐‘ฆ =0

8. 12โข๐‘ฅ2โข๐‘ฆโ€ณ โˆ’5โข๐‘ฅโข๐‘ฆโ€ณ +6โข๐‘ฆ =0

9. 4โข๐‘ฅ2โข๐‘ฆโ€ณ +8โข๐‘ฅโข๐‘ฆโ€ฒ +๐‘ฆ =0

10. 3โข๐‘ฅ2โข๐‘ฆโ€ณ โˆ’๐‘ฅโข๐‘ฆโ€ฒ +๐‘ฆ =0

11. 2โข๐‘ฅ2โข๐‘ฆโ€ณ โˆ’3โข๐‘ฅโข๐‘ฆโ€ฒ +2โข๐‘ฆ =0

12. ๐‘ฅ2โข๐‘ฆโ€ณ +3โข๐‘ฅโข๐‘ฆโ€ฒ +5โข๐‘ฆ =0

13. 9โข๐‘ฅ2โข๐‘ฆโ€ณ +15โข๐‘ฅโข๐‘ฆโ€ฒ +๐‘ฆ =0

14. ๐‘ฅ2โข๐‘ฆโ€ณ โˆ’๐‘ฅโข๐‘ฆโ€ฒ +10โข๐‘ฆ =0

15. ๐‘ฅ2โข๐‘ฆโ€ณ โˆ’6โข๐‘ฆ =0

16. 2โข๐‘ฅ2โข๐‘ฆโ€ณ +3โข๐‘ฅโข๐‘ฆโ€ฒ โˆ’๐‘ฆ =0

17. ๐‘ฅ2โข๐‘ฆโ€ณ โˆ’3โข๐‘ฅโข๐‘ฆโ€ฒ +4โข๐‘ฆ =0

18. 2โข๐‘ฅ2โข๐‘ฆโ€ณ +10โข๐‘ฅโข๐‘ฆโ€ฒ +9โข๐‘ฆ =0

Q7.4.2

19.

  1. Adapt the proof of Theorem 7.4.3 to show that ๐‘ฆ =๐‘ฆโก(๐‘ฅ) satisfies the Euler equation ๐‘Žโข๐‘ฅ2โข๐‘ฆโ€ณ+๐‘โข๐‘ฅโข๐‘ฆโ€ฒ+๐‘โข๐‘ฆ=0(A) on (โˆ’โˆž,0) if and only if ๐‘Œโก(๐‘ก) =๐‘ฆโก(โˆ’๐‘’๐‘ก) ๐‘Žโข๐‘‘2โข๐‘Œ๐‘‘โข๐‘ก2+(๐‘โˆ’๐‘Ž)โข๐‘‘โข๐‘Œ๐‘‘โข๐‘ก+๐‘โข๐‘Œ=0. on (โˆ’โˆž,โˆž).
  2. Use (a) to show that the general solution of Equation A on (โˆ’โˆž,0) is ๐‘ฆ=๐‘1โข|๐‘ฅ|๐‘Ÿ1+๐‘2โข|๐‘ฅ|๐‘Ÿ2โข if ๐‘Ÿ1 and ๐‘Ÿ2 are distinct real numbers; ๐‘ฆ=|๐‘ฅ|๐‘Ÿ1โข(๐‘1+๐‘2โขlnโก|๐‘ฅ|)โข if ๐‘Ÿ1=๐‘Ÿ2; ๐‘ฆ=|๐‘ฅ|๐œ†โข[๐‘1โขcosโก(๐œ”โขlnโก|๐‘ฅ|)+๐‘2โขsinโก(๐œ”โขlnโก|๐‘ฅ|)]โข if ๐‘Ÿ1,๐‘Ÿ2=๐œ†ยฑ๐‘–โข๐œ” with ๐œ”>0.

20. Use reduction of order to show that if

๐‘Žโข๐‘Ÿโข(๐‘Ÿโˆ’1)+๐‘โข๐‘Ÿ+๐‘=0

has a repeated root ๐‘Ÿ1 then ๐‘ฆ =๐‘ฅ๐‘Ÿ1โข(๐‘1 +๐‘2โขlnโก๐‘ฅ) is the general solution of

๐‘Žโข๐‘ฅ2โข๐‘ฆโ€ณ+๐‘โข๐‘ฅโข๐‘ฆโ€ฒ+๐‘โข๐‘ฆ=0

on (0,โˆž).

21. A nontrivial solution of

๐‘ƒ0โก(๐‘ฅ)โข๐‘ฆโ€ณ+๐‘ƒ1โก(๐‘ฅ)โข๐‘ฆโ€ฒ+๐‘ƒ2โก(๐‘ฅ)โข๐‘ฆ=0

is said to be oscillatory on an interval (๐‘Ž,๐‘) if it has infinitely many zeros on (๐‘Ž,๐‘). Otherwise ๐‘ฆ is said to be nonoscillatory on (๐‘Ž,๐‘). Show that the equation

๐‘ฅ2โข๐‘ฆโ€ณ+๐‘˜โข๐‘ฆ=0(๐‘˜=constant)

has oscillatory solutions on (0,โˆž) if and only if ๐‘˜ >1/4.

22. In Example 7.4.2 we saw that ๐‘ฅ0 =1 and ๐‘ฅ0 =โˆ’1 are regular singular points of Legendreโ€™s equation

(1โˆ’๐‘ฅ2)โข๐‘ฆโ€ณโˆ’2โข๐‘ฅโข๐‘ฆโ€ฒ+๐›ผโข(๐›ผ+1)โข๐‘ฆ=0.(A)

  1. Introduce the new variables ๐‘ก =๐‘ฅ โˆ’1 and ๐‘Œโก(๐‘ก) =๐‘ฆโข(๐‘ก +1), and show that ๐‘ฆ is a solution of (A) if and only if ๐‘Œ is a solution of ๐‘กโข(2+๐‘ก)โข๐‘‘2โข๐‘Œ๐‘‘โข๐‘ก2+2โข(1+๐‘ก)โข๐‘‘โข๐‘Œ๐‘‘โข๐‘กโˆ’๐›ผโข(๐›ผ+1)โข๐‘Œ=0, which has a regular singular point at ๐‘ก0 =0.
  2. Introduce the new variables ๐‘ก =๐‘ฅ +1 and ๐‘Œโก(๐‘ก) =๐‘ฆโข(๐‘ก โˆ’1), and show that ๐‘ฆ is a solution of (A) if and only if ๐‘Œ is a solution of ๐‘กโข(2โˆ’๐‘ก)โข๐‘‘2โข๐‘Œ๐‘‘โข๐‘ก2+2โข(1โˆ’๐‘ก)โข๐‘‘โข๐‘Œ๐‘‘โข๐‘ก+๐›ผโข(๐›ผ+1)โข๐‘Œ=0, which has a regular singular point at ๐‘ก0 =0.

23. Let ๐‘ƒ0,๐‘ƒ1, and ๐‘ƒ2 be polynomials with no common factor, and suppose ๐‘ฅ0 โ‰ 0 is a singular point of

๐‘ƒ0โก(๐‘ฅ)โข๐‘ฆโ€ณ+๐‘ƒ1โก(๐‘ฅ)โข๐‘ฆโ€ฒ+๐‘ƒ2โก(๐‘ฅ)โข๐‘ฆ=0.(A)

Let ๐‘ก =๐‘ฅ โˆ’๐‘ฅ0 and ๐‘Œโก(๐‘ก) =๐‘ฆโข(๐‘ก +๐‘ฅ0).
  1. Show that ๐‘ฆ is a solution of (A) if and only if ๐‘Œ is a solution of ๐‘…0โก(๐‘ก)โข๐‘‘2โข๐‘Œ๐‘‘โข๐‘ก2+๐‘…1โก(๐‘ก)โข๐‘‘โข๐‘Œ๐‘‘โข๐‘ก+๐‘…2โก(๐‘ก)โข๐‘Œ=0.(B) where ๐‘…๐‘–โก(๐‘ก)=๐‘ƒ๐‘–โข(๐‘ก+๐‘ฅ0),๐‘–=0,1,2.
  2. Show that ๐‘…0, ๐‘…1, and ๐‘…2 are polynomials in ๐‘ก with no common factors, and ๐‘…0โก(0) =0; thus, ๐‘ก0 =0 is a singular point of (B).

This page titled 7.5E: Regular Singular Points Euler Equations (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?