# 8.3E: Solution of Initial Value Problems (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Q8.3.1

In Exercises 8.3.1-8.3.31 use the Laplace transform to solve the initial value problem.

1. $$y''+3y'+2y=e^t, \quad y(0)=1,\quad y'(0)=-6$$

2. $$y''-y'-6y=2, \quad y(0)=1,\quad y'(0)=0$$

3. $$y''+y'-2y=2e^{3t}, \quad y(0)=-1,\quad y'(0)=4$$

4. $$y''-4y=2 e^{3t}, \quad y(0)=1,\quad y'(0)=-1$$

5. $$y''+y'-2y=e^{3t}, \quad y(0)=1,\quad y'(0)=-1$$

6. $$y''+3y'+2y=6e^t, \quad y(0)=1,\quad y'(0)=-1$$

7. $$y''+y=\sin2t, \quad y(0)=0,\quad y'(0)=1$$

8. $$y''-3y'+2y=2e^{3t}, \quad y(0)=1,\quad y'(0)=-1$$

9. $$y''-3y'+2y=e^{4t}, \quad y(0)=1,\quad y'(0)=-2$$

10. $$y''-3y'+2y=e^{3t}, \quad y(0)=-1,\quad y'(0)=-4$$

11. $$y''+3y'+2y=2e^t, \quad y(0)=0,\quad y'(0)=-1$$

12. $$y''+y'-2y=-4, \quad y(0)=2,\quad y'(0)=3$$

13. $$y''+4y=4, \quad y(0)=0,\quad y'(0)=1$$

14. $$y''-y'-6y=2, \quad y(0)=1,\quad y'(0)=0$$

15. $$y''+3y'+2y=e^t, \quad y(0)=0,\quad y'(0)=1$$

16. $$y''-y=1, \quad y(0)=1,\quad y'(0)=0$$

17. $$y''+4y=3\sin t, \quad y(0)=1,\quad y'(0)=-1$$

18. $$y''+y'=2e^{3t}, \quad y(0)=-1,\quad y'(0)=4$$

19. $$y''+y=1, \quad y(0)=2,\quad y'(0)=0$$

20. $$y''+y=t, \quad y(0)=0,\quad y'(0)=2$$

21. $$y''+y=t-3\sin2t, \quad y(0)=1,\quad y'(0)=-3$$

22. $$y''+5y'+6y=2e^{-t}, \quad y(0)=1,\quad y'(0)=3$$

23. $$y''+2y'+y=6\sin t-4\cos t, \quad y(0)=-1,\; y'(0)=1$$

24. $$y''-2y'-3y=10\cos t, \quad y(0)=2,\quad y'(0)=7$$

25. $$y''+y=4\sin t+6\cos t, \quad y(0)=-6,\; y'(0)=2$$

26. $$y''+4y=8\sin2t+9\cos t, \quad y(0)=1,\quad y'(0)=0$$

27. $$y''-5y'+6y=10e^t\cos t, \quad y(0)=2,\quad y'(0)=1$$

28. $$y''+2y'+2y=2t, \quad y(0)=2,\quad y'(0)=-7$$

29. $$y''-2y'+2y=5\sin t+10\cos t, \quad y(0)=1,\; y'(0)=2$$

30. $$y''+4y'+13y=10e^{-t}-36e^t, \quad y(0)=0,\; y'(0)=-16$$

31. $$y''+4y'+5y=e^{-t}(\cos t+3\sin t), \quad y(0)=0,\quad y'(0)=4$$

## Q8.3.2

32. $$2y''-3y'-2y=4e^t, \quad y(0)=1,\; y'(0)=-2$$

33. $$6y''-y'-y=3e^{2t}, \quad y(0)=0,\; y'(0)=0$$

34. $$2y''+2y'+y=2t, \quad y(0)=1,\; y'(0)=-1$$

35. $$4y''-4y'+5y=4\sin t-4\cos t, \quad y(0)=0,\; y'(0)=11/17$$

36. $$4y''+4y'+y=3\sin t+\cos t, \quad y(0)=2,\; y'(0)=-1$$

37. $$9y''+6y'+y=3e^{3t}, \quad y(0)=0,\; y'(0)=-3$$

38. Suppose $$a,b$$, and $$c$$ are constants and $$a\ne0$$. Let $y_1={\cal L}^{-1}\left(as+b\over as^2+bs+c\right)\quad \text{and} \quad y_2={\cal L}^{-1}\left(a\over as^2+bs+c\right). \nonumber$

Show that $y_1(0)=1,\quad y_1'(0)=0\quad \text{and} \quad y_2(0)=0,\quad y_2'(0)=1.\nonumber$

HINT: Use the Laplace transform to solve the initial value problems

$\begin{array}{lll}{ay''+by'+cy=0,}&{y(0)=1,}&{y'(0)=0}\\[4pt]{ay''+by'+cy=0,}&{y(0)=0,}&{y'(0)=1} \end{array}\nonumber$

This page titled 8.3E: Solution of Initial Value Problems (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.