A.5.7: Section 5.7 Answers
( \newcommand{\kernel}{\mathrm{null}\,}\)
1. yp=−cos3xln|sec3x+tan3x|9
2. yp=−sin2xln|cos2x|4+xcos2x2
3. yp=4ex(1+ex)ln(1+e−x)
4. yp=3ex(cosxln|cosx|+xsinx)
5. yp=85x7/2ex
6. yp=exln(1−e−2x)−e−xln(e2x−1)
7. yp=2(x2−3)3
8. yp=e2xx
9. yp=x1/2exlnx
10. yp=e−x(x+2)
11. yp=−4x5/2
12. yp=−2x2sinx−2xcosx
13. yp=−xe−x(x+1)2
14. yp=−√xcos√x2
15. yp=3x4ex2
16. yp=xa+1
17. yp=x2sinx2
18. yp=−2x2
19. yp=−e−xsinx
20. yp=−√x2
21. yp=x3/24
22. yp=−3x2
23. yp=x3ex2
24. yp=−4x3/215
25. yp=x3ex
26. yp=xex
27. yp=x2
28. yp=xex(x−2)
29. yp=√xex(x−1)/4
30. y=e2x(3x2−2x+6)6+xe−x3
31. y=(x−1)2ln(1−x)+2x2−5x+3
32. y=(x2−1)ex−5(x−1)
33. y=x(x2+6)3(x2−1)
34. y=−x22+x+12x2
35. y=x2(4x+9)6(x+1)
38.
- y=k0coshx+k1sinhx+∫x0sinh(x−t)f(t)dt
- y′=k0sinhx+k1coshx+∫x0cosh(x−t)f(t)dt
39.
- y(x)=k0cosx+k1sinx+∫x0sin(x−t)f(t)dt
- y′(x)=−k0sinx+k1cosx+∫x0cos(x−t)f(t)dt