Skip to main content
Mathematics LibreTexts

A.7.1: Section 7.1 Answers

  • Page ID
    43776
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1.

    1. \(R = 2;\: I = (−1, 3)\)
    2. \(R = 1/2;\: I = (3/2, 5/2)\)
    3. \(R = 0\)
    4. \(R = 16;\: I = (−14, 18)\)
    5. \(R = ∞;\: I = (−∞, ∞)\)
    6. \(R = 4/3;\: I = (−25/3, −17/3)\)

    3.

    1. \(R = 1;\: I = (0, 2)\)
    2. \(R = \sqrt{2};\: I = (−2 −\sqrt{2}, −2 + \sqrt{2})\)
    3. \(R = ∞;\: I = (−∞,∞)\)
    4. \(R = 0\)
    5. \(R = \sqrt{3};\: I = (− \sqrt{3}, \sqrt{3})\)
    6. \(R = 1\\[4pt]: I = (0, 2)\)

    5.

    1. \(R = 3;\: I = (0, 6)\)
    2. \(R = 1;\: I = (−1, 1)\)
    3. \(R = 1/\sqrt{3};\: I = (3 − 1/\sqrt{3}, 3 + 1/\sqrt{3})\)
    4. \(R = ∞;\: I = (−∞, ∞)\)
    5. \(R = 0\)
    6. \(R = 2;\: I = (−1, 3)\)

    11. \(b_{n} = 2(n + 2)(n + 1)a_{n+2} + (n + 1)na_{n+1} + (n + 3)a_{n}\)

    12. \(b_{0} = 2a_{2} − 2a_{0}\: b_{n} = (n + 2)(n + 1)a_{n+2} + [3n(n − 1) − 2]a_{n} + 3(n − 1)a_{n−1},\: n ≥ 1\)

    13. \(b_{n} = (n + 2)(n + 1)a_{n+2} + 2(n + 1)a_{n+1} + (2n^{2} − 5n + 4)a_{n}\)

    14. \(b_{n} = (n + 2)(n + 1)a_{n+2} + 2(n + 1)a_{n+1} + (n^{2} − 2n + 3)a_{n}\)

    15. \(b_{n} = (n + 2)(n + 1)a_{n+2} + (3n^{2} − 5n + 4)a_{n}\)

    16. \(b_{0} = −2a_{2} + 2a_{1} + a_{0},\: b_{n} = −(n + 2)(n + 1)a_{n+2} + (n + 1)(n + 2)a_{n+1} + (2n + 1)a_{n} + a_{n−1},\: n ≥ 2\)

    17. \(b_{0} = 8a_{2} + 4a_{1} − 6a_{0},\: b_{n} = 4(n + 2)(n + 1)a_{n+2} + 4(n + 1)^{2}a_{n+1} + (n^{2} + n − 6)a_{n} − 3a_{n−1},\: n ≥ 1\)

    21. \(b_{0} = (r + 1)(r + 2)a_{0},\: b_{n} = (n + r + 1)(n + r + 2)a_{n} − (n + r − 2)^{2} a_{n−1},\: n ≥ 1.\)

    22. \(b_{0} = (r − 2)(r + 2)a_{0},\: b_{n} = (n + r − 2)(n + r + 2)a_{n} + (n + r + 2)(n + r − 3)a_{n−1},\: n ≥ 14\)

    23. \(b_{0} = (r − 1)^{2} a_{0},\: b_{1} = r^{2}a_{1} + (r + 2)(r + 3)a_{0},\: bn = (n + r − 1)^{2} a_{n} + (n + r + 1)(n + r + 2)a_{n−1} + (n + r − 1)a_{n−2},\: n ≥ 2\)

    24. \(b_{0} = r(r + 1)a_{0},\: b_{1} = (r + 1)(r + 2)a_{1} + 3(r + 1)(r + 2)a_{0},\: b_{n} = (n + r)(n + r + 1)a_{n} + 3(n + r)(n + r + 1)a_{n−1} + (n + r)a_{n−2},\: n ≥ 2\)

    25. \(b_{0} = (r + 2)(r + 1)a_{0},\: b_{1} = (r + 3)(r + 2)a_{1},\: b_{n} = (n + r + 2)(n + r + 1)a_{n} + 2(n + r − 1)(n + r − 3)a_{n−2},\: n ≥ 2\)

    26. \(b_{0} = 2(r + 1)(r + 3)a_{0},\: b_{1} = 2(r + 2)(r + 4)a_{1},\: b_{n} = 2(n + r + 1)(n + r + 3)a_{n} + (n + r − 3)(n + r)a_{n−2},\: n ≥ 2\)


    This page titled A.7.1: Section 7.1 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?