A.9.2: Section 9.2 Answers
- Page ID
- 43791
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)1. \(y=e^{x}(c_{1}+c_{2}x+c_{3}x^{2})\)
2. \(y=c_{1}e^{x}+c_{2}e^{-x}+c_{3}\cos 3x+c_{4}\sin 3x\)
3. \(y = c_{1}e^{x} + c_{2} \cos 4x + c_{3} \sin 4x\)
4. \(y = c_{1}e^{x} + c_{2}e^{−x} + c_{3}e^{−3x/2}\)
5. \(y = c_{1}e^{−x} + e^{−2x} (c_{1} \cos x + c_{2} \sin x)\)
6. \(y = c_{1}e^{x} + e^{x/2} (c_{2} + c_{3}x)\)
7. \(y = e ^{-x/3} (c_{1} + c_{2}x + c_{3}x^{2} )\)
8. \(y = c_{1} + c_{2}x + c_{3} \cos x + c_{4} \sin x\)
9. \(y = c_{1}e^{2x} + c_{2}e^{−2x} + c_{3} \cos 2x + c_{4} \sin 2x\)
10. \(y = (c_{1} + c_{2}x) \cos \sqrt{6}x + (c_{3} + c_{4}x) \sin\sqrt{6}x\)
11. \(y = e^{3x/2} (c_{1} + c_{2}x) + e^{−3x/2} (c_{3} + c_{4}x)\)
12. \(y = c_{1}e^{−x/2} + c_{2}e^{−x/3} + c_{3} \cos x + c_{4} \sin x\)
13. \(y = c_{1}e^{x}+c_{2}e^{−2x}+c_{3}e^{−x/2}+c_{4}e^{−3x/2}\)
14. \(y = e^{x} (c_{1}+c_{2}x+c_{3} \cos x+c_{4} \sin x)\)
15. \(y = \cos 2x − 2 \sin 2x + e^{2x}\)
16. \(y = 2e^{x} + 3e^{−x} − 5e^{−3x}\)
17. \(y = 2e^{x} + 3xe^{x} − 4e^{−x}\)
18. \(y = 2e^{−x} \cos x − 3e^{−x} \sin x + 4e^{2x}\)
19. \(y = \frac{9}{5} e^{−5x/3} + e^{x} (1 + 2x)\)
20. \(y = e^{2x} (1 − 3x + 2x^{2} )\)
21. \(y = e^{3x} (2 − x) + 4e^{−x/2}\)
22. \(y = e^{x/2} (1 − 2x) + 3e^{−x/2}\)
23. \(y = \frac{1}{8} (5e^{2x} + e^{−2x} + 10 \cos 2x + 4 \sin 2x)\)
24. \(y = −4e^{x} + e^{2x} − e^{4x} + 2e^{−x}\)
25. \(y=2e^{x}-e^{-x}\)
26. \(y = e^{2x} + e^{−2x} + e^{−x} (3 \cos x + \sin x)\)
27. \(y = 2e^{−x/2} + \cos 2x − \sin 2x\)
28.
- \(\{e^{x},xe^{x},e^{2x}\}\:\:1\)
- \(\{\cos 2x, \sin 2x, e^{3x} \}\: :\: 26\)
- \(\{e ^{−x} \cos x, e^{−x} \sin x, e^{x} \}\: :\: 5\)
- \(\{1, x, x^{2}, e^{x} \}\: 2e^{x}\)
- \(\{e^{x}, e^{−x}, \cos x, \sin x \}\:8\)
- \(\{\cos x, \sin x, e^{x} \cos x, e^{x} \sin x\}\: :\: 5\)
29. \(\{e^{−3x} \cos 2x, e^{−3x} \sin 2x, e^{2x}, xe^{2x}, 1, x, x^{2} \}\)
30. \(\{e^{x}, xe^{x}, e^{x/2}, xe^{x/2}, x^{2} e^{x/2}, \cos x, \sin x \}\)
31. \(\{\cos 3x, x \cos 3x, x^{2} \cos 3x, \sin 3x, x \sin 3x, x^{2} \sin 3x, 1, x \}\)
32. \(\{e^{2x}, xe^{2x}, x^{2} e^{2x}, e^{−x}, xe^{−x}, 1 \}\)
33. \(\{\cos x, \sin x, \cos 3x, x \cos 3x, \sin 3x, x \sin 3x, e^{2x} \}\)
34. \(\{e^{2x}, xe^{2x}, e^{−2x}, xe^{−2x}, \cos 2x, x \cos 2x, \sin 2x, x \sin 2x \}\)
35. \(\{e^{−x/2} \cos 2x, xe^{−x/2} \cos 2x, x^{2} e^{−x/2} \cos 2x, e^{−x/2} \sin 2x, xe^{−x/2} \sin 2x, x^{2} e^{−x/2} \sin 2x \}\)
36. \(\{1, x, x^{2}, e^{2x}, xe^{2x}, \cos 2x, x \cos 2x, \sin 2x, x \sin 2x \}\)
37. \(\{\cos (x/2), x \cos (x/2), \sin (x/2), x \sin (x/2), \cos 2x/3 x \cos (2x/3), x^{2} \cos (2x/3), \sin (2x/3), x \sin (2x/3), x^{2} \sin (2x/3) \}\)
38. \(\{e^{−x}, e^{3x}, e^{x} \cos 2x, e^{x} \sin 2x \}\)
39. b. \(e^{(a_{1}+a_{2}+\ldots +a_{n})x}\prod_{1\leq i<j\leq n}(a_{j}-a_{i})\)
43.
- \(\{ e^{x},e^{-x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{-x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)\}\)
- \(\{e^{-x},e^{x/2}\cos\left(\frac{\sqrt{3}}{2}x\right),e^{x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)\}\)
- \(\{e^{2x}\cos 2x,e^{2x}\sin 2x, e^{-2x}\cos 2x,e^{-2x}\sin 2x\}\)
- \(\{e^{x},e^{-x},e^{x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{x/2}\sin\left(\frac{\sqrt{3}}{2}x\right), e^{-x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{-x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)\}\)
- \(\{\cos 2x,\sin 2x, e^{-\sqrt{3x}}\cos x, e^{-\sqrt{3x}}\sin x, e^{\sqrt{3x}}\cos x, e^{\sqrt{3x}}\sin x\}\)
- \(\{1, e^{2x}, e^{3x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{3x/2}\sin\left(\frac{\sqrt{3}}{2}x\right), e^{x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)\}\)
- \(\{e^{-x}. e^{x/2}\cos\left(\frac{\sqrt{3}}{2}x\right), e^{x/2}\sin\left(\frac{\sqrt{3}}{2}x\right), e^{-x/2}\cos\left(\frac{\sqrt{3}}{2}x \right), e^{-x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)\}\)
45. \(y=c_{1}x^{r_{1}}+c_{2}x^{r_{2}}+c_{3}x^{r_{3}}\: (r_{1}, r_{2}, r_{3}\text{ distinct)};\: y=c_{1}x^{r_{1}}+(c_{2}+c_{3}\ln x)x^{r_{2}}\: (r_{1}, r_{2}\text{ distinct)};\: y=[c_{1}+c_{2}\ln x+c_{3}(\ln x)^{2}]x^{r_{1}};\: y=c_{1}x^{r_{1}}+x^{\lambda }[c_{2}\cos (\omega\ln x)+c_{3}\sin (\omega\ln x)]\)