Skip to main content
Mathematics LibreTexts

A.9.4: Section 9.4 Answers

  • Page ID
    43793
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. \(y_{p}=2x^{3}\)

    2. \(y_{p}=\frac{8}{105}x^{7/2}e^{-x^{2}}\)

    3. \(y_{p}=x\ln |x|\)

    4. \(y_{p}=-\frac{2(x^{2}+2)}{x}\)

    5. \(y_{p}=-\frac{xe^{-3x}}{64}\)

    6. \(y_{p}=-\frac{2x^{2}}{3}\)

    7. \(y_{p}=-\frac{e^{-x}(x+1)}{x}\)

    8. \(y_{p}=2x^{2}\ln |x|\)

    9. \(y_{p}=x^{2}+1\)

    10. \(y_{p}=\frac{2x^{2}+6}{3}\)

    11. \(y_{p}=\frac{x^{2}\ln |x|}{3}\)

    12. \(y_{p}=-x^{2}-2\)

    13. \(\frac{1}{4}x^{3}\ln |x|-\frac{25}{48}x^{3}\)

    14. \(y_{p}=\frac{x^{5/2}}{4}\)

    15. \(y_{p}=\frac{x(12-x^{2})}{6}\)

    16. \(y_{p}=\frac{x^{4}\ln |x|}{6}\)

    17. \(y_{p}=\frac{x^{3}e^{x}}{2}\)

    18. \(y_{p}=x^{2}\ln |x|\)

    19. \(y_{p}=\frac{xe^{x}}{2}\)

    20. \(y_{p}=\frac{3xe^{x}}{2}\)

    21. \(y_{p}=-x^{3}\)

    22. \(y=-x(\ln x)^{2}+3x+x^{3}-2x\ln x\)

    23. \(y=\frac{x^{3}}{2}(\ln |x|)^{2}+x^{2}-x^{3}+2x^{3}\ln |x|\)

    24. \(y=-\frac{1}{2}(3x+1)xe^{x}-3e^{x}-e^{2x}+4xe^{-x}\)

    25. \(y=\frac{3}{2}x^{4}(\ln x)^{2}+3x-x^{4}+2x^{4}\ln x\)

    26. \(y=-\frac{x^{4}+12}{6}+3x-x^{2}+2e^{x}\)

    27. \(y=\left(\frac{x^{2}}{3}-\frac{x}{2}\right)\ln |x|+4x-2x^{2}\)

    28. \(y=-\frac{xe^{x}(1+3x)}{2}+\frac{x+1}{2}-\frac{e^{x}}{4}+\frac{e^{3x}}{2}\)

    29. \(y=-8x+2x^{2}-2x^{3}+2e^{x}-e^{-x}\)

    30. \(y=3x^{2}\ln x-7x^{2}\)

    31. \(y=\frac{3(4x^{2}+9)}{2}+\frac{x}{2}-\frac{e^{x}}{2}+\frac{e^{-x}}{2}+\frac{e^{2x}}{4}\)

    32. \(y=x\ln x+x-\sqrt{x}+\frac{1}{x}+\frac{1}{\sqrt{x}}\)

    33. \(y=x^{3}\ln |x|+x-2x^{3}+\frac{1}{x}-\frac{1}{x^{2}}\)

    35. \(y_{p}=\int_{x_{0}}^{x}\frac{e^{(x-t)}-3e^{-(x-t)}+2e^{-2(x-t)} }{6}F(t)dt\)

    36. \(y_{p}=\int_{x_{0}}^{x}\frac{(x-t)^{2}(2x+t)}{6xt^{3}}F(t)dt\)

    37. \(y_{p}=\int_{x_{0}}^{x}\frac{xe^{(x-t)}-x^{2}+x(t-1) }{t^{4}}F(t)dt\)

    38. \(y_{p}=\int_{x_{0}}^{x}\frac{x^{2}-t(t-2)-2te^{(x-t)}}{2x(t-1)^{2}}F(t)dt\)

    39. \(y_{p}=\int_{x_{0}}^{x}\frac{e^{2(x-t)}-2e^{(x-t)}+2e^{-(x-t)}-e^{-2(x-t)}}{12}F(t)dt\)

    40. \(y_{p}=\int_{x_{0}}^{x}\frac{(x-t)^{3}}{6x}F(t)dt\)

    41. \(y_{p}=\int_{x_{0}}^{x}\frac{(x+t)(x-t)^{3}}{12x^{2}t^{3}}F(t)dt\)

    42. \(y_{p}=\int_{x_{0}}^{x}\frac{e^{2(x-t)}(1+2x)+e^{-2(x-t)}(1-2t)-4x^{2}+4t^{2}-2}{32t^{2}}F(t)dt\)


    This page titled A.9.4: Section 9.4 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?