Skip to main content
Mathematics LibreTexts

A.11.1: Section 11.1 Answers

  • Page ID
    43742
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    2. \(\lambda_{n}=n^{2},\quad y_{n}=\sin nx,\quad n=1,2,3,\ldots \)

    3. \(\lambda_{0}=0,\quad y_{0}=1;\quad \lambda_{n}=n^{2},\quad y_{n}=\cos nx,\quad n=1,2,3,\ldots \)

    4. \( \lambda_{n}=\frac{(2n-1)^{2}}{4},\quad y_{n}=\sin\frac{(2n-1)x}{2},\quad n=1,2,3,\ldots\)

    5. \( \lambda_{n}=\frac{(2n-1)^{2}}{4},\quad y_{n}=\cos\frac{(2n-1)x}{2},\quad n=1,2,3,\ldots\)

    6. \(\lambda_{0},\quad y_{0}=1,\quad \lambda_{n}=n^{2},\quad y_{1n}=\cos nx,\quad y_{2n}=\sin nx,\quad n=1,2,3,\ldots\)

    7. \(\lambda_{n}=n^{2}\pi ^{2},\quad y_{n}=\cos n\pi x,\quad n=1,2,3,\ldots\)

    8. \(\lambda_{n}=\frac{(2n-1)^{2}\pi ^{2}}{4},\quad y_{n}=\cos\frac{(2n-1)\pi x}{2},\quad n=1,2,3,\ldots\)

    9. \(\lambda_{n}=n^{2}\pi ^{2},\quad y_{n}=\sin n\pi x,\quad n=1,2,3,\ldots\)

    10. \(\lambda_{0}=0,\quad y_{0}=1,\quad \lambda_{n}=n^{2}\pi ^{2},\quad y_{1n}=\cos n\pi x,\quad y_{2n}=\sin n\pi xn\quad n=1,2,3,\ldots\)

    11. \(\lambda_{n}=\frac{(2n-1)^{2}\pi ^{2}}{4},\quad y_{n}=\sin\frac{(2n-1)\pi x}{2},\quad n=1,2,3,\ldots\)

    12. \(\lambda_{0},\quad y_{0}=1,\quad \lambda_{n}=\frac{n^{2}\pi ^{2}}{4},\quad y_{1n}=\cos\frac{n\pi x}{2},\quad y_{2n}=\sin\frac{n\pi x}{2},\quad n=1,2,3,\ldots\)

    13. \(\lambda_{n}=\frac{n^{2}\pi ^{2}}{4},\quad y_{n}=\sin\frac{n\pi x}{2},\quad n=1,2,3,\ldots\)

    14. \(\lambda_{n}=\frac{(2n-1)^{2}\pi ^{2}}{36},\quad y_{n}=\cos\frac{(2n-1)\pi x}{6},\quad n=1,2,3,\ldots\)

    15. \(\lambda_{n}=(2n-1)^{2}\pi ^{2},\quad y_{n}=\sin (2n-1)\pi x,\quad n=1,2,3,\ldots\)

    16. \(\lambda_{n}=\frac{n^{2}\pi ^{2}}{25},\quad y_{n}=\cos\frac{n\pi x}{5},\quad n=1,2,3,\ldots\)

    23. \(\lambda_{n}=4n^{2}\pi ^{2}/L^{2}\quad y_{n}=\sin\frac{2n\pi x}{L},\quad n=1,2,3,\ldots\)

    24. \(\lambda_{n}=n^{2}\pi ^{2}/L^{2}\quad y_{n}=\cos\frac{n\pi x}{L},\quad n=1,2,3,\ldots\)

    25. \(\lambda_{n}=4n^{2}\pi ^{2}/L^{2}\quad y_{n}=\sin\frac{2n\pi x}{L},\quad n=1,2,3,\ldots\)

    26. \(\lambda_{n}=n^{2}\pi ^{2}/L^{2}\quad y_{n}=\cos\frac{n\pi x}{L},\quad n=1,2,3,\ldots\)


    This page titled A.11.1: Section 11.1 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

    • Was this article helpful?