Skip to main content
Mathematics LibreTexts

7.9: Problems

  • Page ID
    90965
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\)

    Find the solution of each initial value problem using the appropriate initial value Green’s function.

    1. \(y^{\prime \prime}-3 y^{\prime}+2 y=20 e^{-2 x}, \quad y(0)=0, \quad y^{\prime}(0)=6\).
    2. \(y^{\prime \prime}+y=2 \sin 3 x, \quad y(0)=5, \quad y^{\prime}(0)=0\).
    3. \(y^{\prime \prime}+y=1+2 \cos x, \quad y(0)=2, \quad y^{\prime}(0)=0\).
    4. \(x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=3 x^{2}-x, \quad y(1)=\pi, \quad y^{\prime}(1)=0\).

    Exercise \(\PageIndex{2}\)

    Use the initial value Green’s function for \(x^{\prime \prime}+x=f(t), x(0)=4, x^{\prime}(0)=\) 0 , to solve the following problems.

    1. \(x^{\prime \prime}+x=5 t^{2}\).
    2. \(x^{\prime \prime}+x=2 \tan t\).

    Exercise \(\PageIndex{3}\)

    For the problem \(y^{\prime \prime}-k^{2} y=f(x), y(0)=0, y^{\prime}(0)=1\),

    1. Find the initial value Green’s function.
    2. Use the Green’s function to solve \(y^{\prime \prime}-y=e^{-x}\).
    3. Use the Green’s function to solve \(y^{\prime \prime}-4 y=e^{2 x}\).

    Exercise \(\PageIndex{4}\)

    Find and use the initial value Green’s function to solve

    \[x^{2} y^{\prime \prime}+3 x y^{\prime}-15 y=x^{4} e^{x}, \quad y(1)=1, y^{\prime}(1)=0 .\nonumber \]

    Exercise \(\PageIndex{5}\)

    Consider the problem \(y^{\prime \prime}=\sin x, y^{\prime}(0)=0, y(\pi)=0\).

    1. Solve by direct integration.
    2. Determine the Green’s function.
    3. Solve the boundary value problem using the Green’s function.
    4. Change the boundary conditions to \(y^{\prime}(0)=5, y(\pi)=-3\).
      1. Solve by direct integration.
      2. Solve using the Green’s function.

    Exercise \(\PageIndex{6}\)

    Let \(C\) be a closed curve and \(D\) the enclosed region. Prove the identity

    \[\int_{C} \phi \nabla \phi \cdot \mathbf{n} d s=\int_{D}\left(\phi \nabla^{2} \phi+\nabla \phi \cdot \nabla \phi\right) d A .\nonumber \]

    Exercise \(\PageIndex{7}\)

    Let \(S\) be a closed surface and \(V\) the enclosed volume. Prove Green’s first and second identities, respectively.

    1. \(\int_{S} \phi \nabla \psi \cdot \mathbf{n} d S=\int_{V}\left(\phi \nabla^{2} \psi+\nabla \phi \cdot \nabla \psi\right) d V\).
    2. \(\int_{S}[\phi \nabla \psi-\psi \nabla \phi] \cdot \mathbf{n} d S=\int_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V\).

    Exercise \(\PageIndex{8}\)

    Let \(C\) be a closed curve and \(D\) the enclosed region. Prove Green’s identities in two dimensions.

    1. First prove

      \[\int_{D}(v \nabla \cdot \mathbf{F}+\mathbf{F} \cdot \nabla v) d A=\int_{C}(v \mathbf{F}) \cdot d \mathbf{s}\nonumber \]

    2. Let \(\mathbf{F}=\nabla u\) and obtain Green’s first identity,

      \[\int_{D}\left(v \nabla^{2} u+\nabla u \cdot \nabla v\right) d A=\int_{C}(v \nabla u) \cdot d \mathbf{s} .\nonumber \]

    Exercise \(\PageIndex{9}\)

    Consider the problem:

    \[\frac{\partial^{2} G}{\partial x^{2}}=\delta\left(x-x_{0}\right), \quad \frac{\partial G}{\partial x}\left(0, x_{0}\right)=0, \quad G\left(\pi, x_{0}\right)=0 .\nonumber \]

    1. Solve by direct integration.
    2. Compare this result to the Green’s function in part \(b\) of the last problem.
    3. Verify that \(G\) is symmetric in its arguments.

    Exercise \(\PageIndex{10}\)

    Consider the boundary value problem: \(y^{\prime \prime}-y=x, x \in(0,1)\), with boundary conditions \(y(0)=y(1)=0\).

    1. Find a closed form solution without using Green’s functions.
    2. Determine the closed form Green’s function using the properties of Green’s functions. Use this Green’s function to obtain a solution of the boundary value problem.
    3. Determine a series representation of the Green’s function. Use this Green’s function to obtain a solution of the boundary value problem.
    4. Confirm that all of the solutions obtained give the same results.

    Exercise \(\PageIndex{11}\)

    Rewrite the solution to Problem 15 and identify the initial value Green’s function.

    Exercise \(\PageIndex{12}\)

    Rewrite the solution to Problem 16 and identify the initial value Green’s functions.

    Exercise \(\PageIndex{13}\)

    Find the Green’s function for the homogeneous fixed values on the boundary of the quarter plane \(x>0, y>0\), for Poisson’s equation using the infinite plane Green’s function for Poisson’s equation. Use the method of images.

    Exercise \(\PageIndex{14}\)

    Find the Green’s function for the one dimensional heat equation with boundary conditions \(u(0, t)=0 u_{x}(L, t), t>0\).

    Exercise \(\PageIndex{15}\)

    Consider Laplace’s equation on the rectangular plate in Figure 6.3.1. Construct the Green’s function for this problem.

    Exercise \(\PageIndex{16}\)

    Construct the Green’s function for Laplace’s equation in the spherical domain in Figure 6.5.1.

    ​​​​​​​​​


    This page titled 7.9: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?