Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 108 results
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/03%3A_Trigonometric_Fourier_Series/3.06%3A_Finite_Length_Strings
    We now return to the physical example of wave propagation in a string.
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/07%3A_Green's_Functions/7.03%3A_The_Nonhomogeneous_Heat_Equation
    Boundary value green’s functions do not only arise in the solution of nonhomogeneous ordinary differential equations. They are also important in arriving at the solution of nonhomogeneous partial diff...Boundary value green’s functions do not only arise in the solution of nonhomogeneous ordinary differential equations. They are also important in arriving at the solution of nonhomogeneous partial differential equations. In this section we will show that this is the case by turning to the nonhomogeneous heat equation.
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/00%3A_Front_Matter/01%3A_TitlePage
    Introduction to Partial Differential Equations Russell Herman University of North Carolina Wilmington
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/11%3A_A_-_Calculus_Review_-_What_Do_I_Need_to_Know_From_Calculus%3F/11.03%3A_Derivatives
    In your calculus classes you have also seen that some relations are represented in parametric form. However, there is at least one other set of elementary functions, which you should already know abou...In your calculus classes you have also seen that some relations are represented in parametric form. However, there is at least one other set of elementary functions, which you should already know about. These are the hyperbolic functions. Such functions are useful in representing hanging cables, unbounded orbits, and special traveling waves called solutions. They also play a role in special and general relativity.
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/05%3A_Non-sinusoidal_Harmonics_and_Special_Functions/5.07%3A_Problems
    Use the derivative identities of Bessel functions, (5.5.15)-(5.5.5), and integration by parts to show that x3J0(x)dx=x3J1(x)2x2J2(x)+C. by considering \[\i...Use the derivative identities of Bessel functions, (5.5.15)-(5.5.5), and integration by parts to show that x3J0(x)dx=x3J1(x)2x2J2(x)+C. by considering 10[Jp(μx)ddx(xddxJp(λx))Jp(λx)ddx(xddxJp(μx))]dx.
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/07%3A_Green's_Functions/7.09%3A_Problems
    x2y2xy+2y=3x2x,y(1)=π,y(1)=0. Find and use the initial value Green’s function to solve \[x^{2} y^{\prime \prime}+3 x y^{\prime}-15 y=...x2y2xy+2y=3x2x,y(1)=π,y(1)=0. Find and use the initial value Green’s function to solve x2y+3xy15y=x4ex,y(1)=1,y(1)=0. Find the Green’s function for the homogeneous fixed values on the boundary of the quarter plane x>0,y>0, for Poisson’s equation using the infinite plane Green’s function for Poisson’s equation.
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/02%3A_Second_Order_Partial_Differential_Equations/2.08%3A_Problems
    Find and sketch the solution of the problem \[\begin{aligned} u_{tt}&=u_{xx},\quad 0\leq x\leq 1,\quad t> o \\ u(x,0)&=\left\{\begin{array}{rr}0,&0\leq x<\frac{1}{4}, \\ 1,&\frac{1}{4}\leq x\leq\frac{...Find and sketch the solution of the problem utt=uxx,0x1,t>ou(x,0)={0,0x<14,1,14x34,0,34<x1,ut(x,0)=0,u(0,t)=0,t>0,u(1,t)=0,t>0,
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/02%3A_Second_Order_Partial_Differential_Equations
    "Either mathematics is too big for the human mind or the human mind is more than a machine." - Kurt Gödel (1906-1978) Thumbnail: Visualization of heat transfer in a pump casing, created by solving the..."Either mathematics is too big for the human mind or the human mind is more than a machine." - Kurt Gödel (1906-1978) Thumbnail: Visualization of heat transfer in a pump casing, created by solving the heat equation. Heat is being generated internally in the casing and being cooled at the boundary, providing a steady state temperature distribution. (CC BY-SA 3.0; via Wikipedia)
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/09%3A_Transform_Techniques_in_Physics
    “There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world.”, ~ Nikolai Lobatchevsky (1792-1856) Thumbnail: Graph of a shifted Dirac delta f...“There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world.”, ~ Nikolai Lobatchevsky (1792-1856) Thumbnail: Graph of a shifted Dirac delta function (1d) (CC By 4.0; Alexander Fufaev via Universaldenker)
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/09%3A_Transform_Techniques_in_Physics/9.01%3A_Introduction
    The solutions of linear partial differential equations can be found by using the method of separation of variables to reduce solving partial differential equations to solving ordinary differential equ...The solutions of linear partial differential equations can be found by using the method of separation of variables to reduce solving partial differential equations to solving ordinary differential equations. We can also use transform methods to transform the given PDE into ODEs or algebraic equations. Solving these equations, we then construct solutions of the PDE using an inverse transform. We will describe in this chapter how one can use Fourier and Laplace transforms to this effect.
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/09%3A_Transform_Techniques_in_Physics/9.03%3A_Exponential_Fourier_Transform
    Both the trigonometric and complex exponential Fourier series provide us with representations of a class of functions of finite period in terms of sums over a discrete set of frequencies.

Support Center

How can we help?