# 5.7: Problems

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Exercise $$\PageIndex{1}$$

Consider the set of vectors $$(-1,1,1),(1,-1,1),(1,1,-1)$$.

1. Use the Gram-Schmidt process to find an orthonormal basis for $$R^{3}$$ using this set in the given order.
2. What do you get if you do reverse the order of these vectors?

## Exercise $$\PageIndex{2}$$

Use the Gram-Schmidt process to find the first four orthogonal polynomials satisfying the following:

1. Interval: $$(-\infty, \infty)$$ Weight Function: $$e^{-x^{2}}$$.
2. Interval: $$(0, \infty)$$ Weight Function: $$e^{-x}$$.

## Exercise $$\PageIndex{3}$$

Find $$P_{4}(x)$$ using

1. The Rodrigues’ Formula in Equation (5.3.3).
2. The three term recursion formula in Equation (5.3.5).

## Exercise $$\PageIndex{4}$$

In Equations (5.3.18)-(5.3.25) we provide several identities for Legendre polynomials. Derive the results in Equations (5.3.19)-(5.3.25) as described in the text. Namely,

1. Differentiating Equation (5.3.18) with respect to $$x$$, derive Equation (5.3.19).
2. Derive Equation (5.3.20) by differentiating $$g(x, t)$$ with respect to $$x$$ and rearranging the resulting infinite series.
3. Combining the last result with Equation (5.3.18), derive Equations (5.3.21)-(5.3.22).
4. Adding and subtracting Equations (5.3.21)-(5.3.22), obtain Equations (5.3.23)-(5.3.24).
5. Derive Equation (5.3.25) using some of the other identities.

## Exercise $$\PageIndex{5}$$

Use the recursion relation (5.3.5) to evaluate $$\int_{-1}^{1} x P_{n}(x) P_{m}(x) d x, n \leq m$$.

## Exercise $$\PageIndex{6}$$

Expand the following in a Fourier-Legendre series for $$x \in(-1,1)$$.

1. $$f(x)=x^{2}$$.
2. $$f(x)=5 x^{4}+2 x^{3}-x+3$$.
3. $$f(x)=\left\{\begin{array}{cc}-1, & -1<x<0, \\ 1, & 0<x<1 .\end{array}\right.$$
4. $$f(x)=\left\{\begin{array}{cc}x, & -1<x<0, \\ 0, & 0<x<1 .\end{array}\right.$$

## Exercise $$\PageIndex{7}$$

Use integration by parts to show $$\Gamma(x+1)=x \Gamma(x)$$.

## Exercise $$\PageIndex{8}$$

Prove the double factorial identities:

$(2 n) ! !=2^{n} n !\nonumber$

and

$(2 n-1) ! !=\frac{(2 n) !}{2^{n} n !} .\nonumber$

## Exercise $$\PageIndex{9}$$

Express the following as Gamma functions. Namely, noting the form $$\Gamma(x+1)=\int_{0}^{\infty} t^{x} e^{-t} d t$$ and using an appropriate substitution, each expression can be written in terms of a Gamma function.

1. $$\int_{0}^{\infty} x^{2 / 3} e^{-x} d x$$.
2. $$\int_{0}^{\infty} x^{5} e^{-x^{2}} d x$$
3. $$\int_{0}^{1}\left[\ln \left(\frac{1}{x}\right)\right]^{n} d x$$

## Exercise $$\PageIndex{10}$$

The coefficients $$C_{k}^{p}$$ in the binomial expansion for $$(1+x)^{p}$$ are given by

$C_{k}^{p}=\frac{p(p-1) \cdots(p-k+1)}{k !} .\nonumber$

1. Write $$C_{k}^{p}$$ in terms of Gamma functions.
2. For $$p=1 / 2$$ use the properties of Gamma functions to write $$C_{k}^{1 / 2}$$ in terms of factorials.
3. Confirm you answer in part $$b$$ by deriving the Maclaurin series expansion of $$(1+x)^{1 / 2}$$.

## Exercise $$\PageIndex{11}$$

The Hermite polynomials, $$H_{n}(x)$$, satisfy the following:

1. $$\left\langle H_{n}, H_{m}\right\rangle=\int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x) d x=\sqrt{\pi} 2^{n} n ! \delta_{n, m}$$.
2. $$H_{n}^{\prime}(x)=2 n H_{n-1}(x)$$.
3. $$H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x)$$.
4. $$H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)$$.

Using these, show that

1. $$H_{n}^{\prime \prime}-2 x H_{n}^{\prime}+2 n H_{n}=0$$. [Use properties ii. and iii.]
2. $$\int_{-\infty}^{\infty} x e^{-x^{2}} H_{n}(x) H_{m}(x) d x=\sqrt{\pi} 2^{n-1} n !\left[\delta_{m, n-1}+2(n+1) \delta_{m, n+1}\right]$$. [Use properties i. and iii.]
3. $$H_{n}(0)=\left\{\begin{array}{cc}0, & n \text { odd, } \\ (-1)^{m} \frac{(2 m) !}{m !}, & n=2 m .\end{array} \quad\right.$$ [Let $$x=0$$ in iii. and iterate. Note from iv. that $$H_{0}(x)=1$$ and $$H_{1}(x)=2 x$$. ]

## Exercise $$\PageIndex{12}$$

In Maple one can type simplify(LegendreP $$\left(2^{*} \mathrm{n}-2,0\right)$$-LegendreP $$\left(2^{*} \mathrm{n}, 0\right)$$ ); to find a value for $$P_{2 n-2}(0)-P_{2 n}(0)$$. It gives the result in terms of Gamma functions. However, in Example 5.3.8 for Fourier-Legendre series, the value is given in terms of double factorials! So, we have

$P_{2 n-2}(0)-P_{2 n}(0)=\frac{\sqrt{\pi}(4 n-1)}{2 \Gamma(n+1) \Gamma\left(\frac{3}{2}-n\right)}=(-1)^{n} \frac{(2 n-3) ! !}{(2 n-2) ! !} \frac{4 n-1}{2 n} .\nonumber$

You will verify that both results are the same by doing the following:

1. Prove that $$P_{2 n}(0)=(-1)^{n} \frac{(2 n-1) ! !}{(2 n) ! !}$$ using the generating function and a binomial expansion.
2. Prove that $$\Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n-1) ! !}{2^{n}} \sqrt{\pi}$$ using $$\Gamma(x)=(x-1) \Gamma(x-1)$$ and iteration.
3. Verify the result from Maple that $$P_{2 n-2}(0)-P_{2 n}(0)=\frac{\sqrt{\pi}(4 n-1)}{2 \Gamma(n+1) \Gamma\left(\frac{3}{2}-n\right)}$$.
4. Can either expression for $$P_{2 n-2}(0)-P_{2 n}(0)$$ be simplified further?

## Exercise $$\PageIndex{13}$$

A solution Bessel’s equation, $$x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0,$$, can be found using the guess $$y(x)=\sum_{j=0}^{\infty} a_{j} x^{j+n}$$. One obtains the recurrence relation $$a_{j}=\frac{-1}{(2 n+i)} a_{j-2}$$. Show that for $$a_{0}=\left(n ! 2^{n}\right)^{-1}$$ we get the Bessel function of the first kind of order $$n$$ from the even values $$j=2 k$$ :

$J_{n}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k !(n+k) !}\left(\frac{x}{2}\right)^{n+2 k} .\nonumber$

## Exercise $$\PageIndex{14}$$

Use the infinite series in the last problem to derive the derivative identities (5.5.15) and (5.5.5):

1. $$\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x) .$$
2. $$\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]=-x^{-n} J_{n+1}(x) .$$

## Exercise $$\PageIndex{15}$$

Prove the following identities based on those in the last problem.

1. $$J_{p-1}(x)+J_{p+1}(x)=\frac{2 p}{x} J_{p}(x)$$.
2. $$J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$$.

## Exercise $$\PageIndex{16}$$

Use the derivative identities of Bessel functions, (5.5.15)-(5.5.5), and integration by parts to show that

$\int x^{3} J_{0}(x) d x=x^{3} J_{1}(x)-2 x^{2} J_{2}(x)+C .\nonumber$

## Exercise $$\PageIndex{17}$$

Use the generating function to find $$J_{n}(0)$$ and $$J_{n}^{\prime}(0)$$.

## Exercise $$\PageIndex{18}$$

Bessel functions $$J_{p}(\lambda x)$$ are solutions of $$x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda^{2} x^{2}-p^{2}\right) y=0$$. Assume that $$x \in(0,1)$$ and that $$J_{p}(\lambda)=0$$ and $$J_{p}(0)$$ is finite.

1. This is the standard Sturm-Liouville form for Bessel’s equation.
2. by considering

$\int_{0}^{1}\left[J_{p}(\mu x) \frac{d}{d x}\left(x \frac{d}{d x} J_{p}(\lambda x)\right)-J_{p}(\lambda x) \frac{d}{d x}\left(x \frac{d}{d x} J_{p}(\mu x)\right)\right] d x .\nonumber$

## Exercise $$\PageIndex{19}$$

We can rewrite Bessel functions, $$J_{v}(x)$$, in a form which will allow the order to be non-integer by using the gamma function. You will need the results from Problem $$\PageIndex{12}$$b for $$\Gamma\left(k+\frac{1}{2}\right)$$.

1. Extend the series definition of the Bessel function of the first kind of order $$v, J_{v}(x)$$, for $$v \geq 0$$ by writing the series solution for $$y(x)$$ in Problem $$\PageIndex{13}$$ using the gamma function.
2. Extend the series to $$J_{-v}(x)$$, for $$v \geq 0$$. Discuss the resulting series and what happens when $$v$$ is a positive integer.
3. Use the results in part $$c$$ with the recursion formula for Bessel functions to obtain a closed form for $$J_{3 / 2}(x)$$.

## Exercise $$\PageIndex{20}$$

In this problem you will derive the expansion

$x^{2}=\frac{c^{2}}{2}+4 \sum_{j=2}^{\infty} \frac{J_{0}\left(\alpha_{j} x\right)}{\alpha_{j}^{2} J_{0}\left(\alpha_{j} c\right)}, \quad 0<x<c,\nonumber$

where the $$\alpha_{j}^{\prime} s$$ are the positive roots of $$J_{1}(\alpha c)=0$$, by following the below steps.

1. List the first five values of $$\alpha$$ for $$J_{1}(\alpha c)=0$$ using the Table 5.5.1 and Figure 5.5.1. [Note: Be careful determining $$\alpha_{1}$$.]
2. Show that $$\left\|J_{0}\left(\alpha_{j} x\right)\right\|^{2}=\frac{c^{2}}{2}\left[J_{0}\left(\alpha_{j} c\right)\right]^{2}, j=2,3, \ldots$$. (This is the most involved step.) First note from Problem $$\PageIndex{18}$$ that $$y(x)=J_{0}\left(\alpha_{j} x\right)$$ is a solution of

$x^{2} y^{\prime \prime}+x y^{\prime}+\alpha_{j}^{2} x^{2} y=0 .\nonumber$

1. Verify the Sturm-Liouville form of this differential equation: $$\left(x y^{\prime}\right)^{\prime}=-\alpha_{j}^{2} x y .$$
2. Noting that $$y(x)=J_{0}\left(\alpha_{j} x\right)$$, integrate the left hand side by parts and use the following to simplify the resulting equation.
1. $$J_{0}^{\prime}(x)=-J_{1}(x)$$ from Equation (5.5.5).
2. Equation (5.5.8).
3. $$J_{2}\left(\alpha_{j} c\right)+J_{0}\left(\alpha_{j} c\right)=0$$ from Equation (5.5.6).
3. Now you should have enough information to complete this part.
3. in order to obtain the desired expansion.

This page titled 5.7: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform.