Skip to main content
Mathematics LibreTexts

2.1: Basic Notions

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The set of complex numbers is obtained algebraically by adjoining the number \(i\) to the set \(\mathbb{R}\) of real numbers, where \(i\) is defined by the property that \(i^2=−1\). We will take a geometric approach and define a complex number to be an ordered pair \((x,y)\) of real numbers. We let \(\mathbb{C}\) denote the set of all complex numbers,

    \[\mathbb{C} =\{(x,y) | x,y∈ \mathbb{R}\}.\]

    Given the complex number \(z=(x,y)\), \(x\) is called the real part of \(z\), denoted Re\((z)\); and \(y\) is called the imaginary part of \(z\), denoted Im\((z)\). The set of real numbers is a subset of \(\mathbb{C}\) under the identification \(x↔(x,0)\), for any real number \(x\).

    Addition in \(\mathbb{C}\) is componentwise,


    and if \(k\) is a real number, we define scalar multiplication by


    Within this framework, \(i=(0,1)\), meaning that any complex number \((x,y)\) can be expressed as \(x+yi\) as suggested here:

    \[ \begin{array} (x,y) &= (x,0)+(0,y) \\ &= x(1,0)+y(0,1) \\ &= x + yi \end{array} \]

    The expression \(x+yi\) is called the Cartesian form of the complex number. This form can be helpful when doing arithmetic of complex numbers, but it can also be a bit gangly. We often let a single letter such as \(z\) or \(w\) represent a complex number. So, \(z=x+yi\) means that the complex number we're calling \(z\) corresponds to the point \((x,y)\) in the plane.

    It is sometimes helpful to view a complex number as a vector, and complex addition corresponds to vector addition in the plane. The same holds for scalar multiplication. For instance, in Figure \(\PageIndex{1}\) we have represented \(z=2+i\), \(w=−1+1.5i\), as well as \(z+w=1+2.5i\), as vectors from the origin to these points in \(\mathbb{C}\). The complex number \(z−w\) can be represented by the vector from \(w\) to \(z\) in the plane.

    Figure \(\PageIndex{1}\): Complex numbers as vectors in the plane. (Copyright; author via source)

    We define complex multiplication using the fact that \(i^2=−1\).

    \[ \begin{array} (x+yi)⋅(s+ti) &= xs+ysi+xti+yti^2 \\ &= (xs−yt)+(ys+xt)i \end{array} \]

    The modulus of \(z=x+yi\), denoted \(|z|\), is given by

    \[|z|= \sqrt{x^2+y^2}.\]

    Note that \(|z|\) gives the Euclidean distance of \(z\) to the point \((0,0)\).

    The conjugate of \(z=x+yi\), denoted \(\overline{z}\), is

    \[\overline{z} =x−yi\]

    In the exercises, the reader is asked to prove various useful properties of the modulus and conjugate.

    Example \(\PageIndex{1}\): Arithmetic of Complex Numbers

    Suppose \(z=3−4i\) and \(w=2+7i\).

    Then \(z+w=5+3i\), and

    \[ \begin{equation} \begin{array} \cdot z \cdot w &= (3−4i)(2+7i) \\ &= 6+28−8i+21i \\ &= 34+13i \end{array} \end{equation} \]

    A few other computations:

    \[ \begin{array} 4z &= 12−16i \\ |z| &= \sqrt{3^2 + (-4)^2} = 5 \\ \overline{zw} &= 34-13i \end{array} \]


    Exercise \(\PageIndex{1}\)

    In each case, determine \(z+w\), \(sz\), \(|z|\), and \(z⋅w\).

    1. \(z=5+2i\), \(s=−4\), \(w=−1+2i\)
    2. \(z=3i\), \(s= \dfrac{1}{2}\), \(w=−3+2i\)
    3. \(z=1+i\), \(s=0.6\), \(w=1−i\)

    a. \(z+w=4+4i\), \(sz=−20−8i\), \(|z|=\sqrt{29}\), and \(zw=−9+8i\).

    Exercise \(\PageIndex{2}\)

    Show that \(z⋅ \overline{z} =|z|^2\), where \(\overline{z}\) is the conjugate of \(z\).


    Let \(z=a+bi\), and show that the two sides of the equation agree.

    Exercise \(\PageIndex{3}\)

    Suppose \(z=x+yi\) and \(w=s+ti\) are two complex numbers. Prove the following properties of the conjugate and the modulus.

    1. \(|w⋅z|=|w|⋅|z|\).
    2. \(\overline{zw}= \overline{z} \cdot \overline{w}\)
    3. \(\overline{z+w}= \overline{z} + \overline{w}\)
    4. \(z+\overline{z}= 2 \text{ Re} (z).\) (Hence, \(z+ \overline{z}\) is a real number.)
    5. \(z- \overline{z}= 2 \text{ Im} (z)i.\)
    6. \(|z|=|\overline{z}|.\)
    Exercise \(\PageIndex{4}\)

    A Pythagorean triple consists of three integers \((a,b,c)\) such that \(a^2+b^2=c^2\). We can use complex numbers to generate Pythagorean triples. Suppose \(z=x+yi\) where \(x\) and \(y\) are positive integers. Let

    \(a= \text{ Re}(z^2) \;\;\;\;\; b= \text{ Im}(z^2) \;\;\;\;\; c=z \overline{z}.\)

    1. Prove that \(a^2+b^2=c^2\).
    2. Find the complex number \(z=x+yi\) that generates the famous triple \((3,4,5)\).
    3. Find the complex number that generates the triple \((5,12,13)\).
    4. Find five other Pythagorean triples, generated using complex numbers of the form \(z=x+yi\), where \(x\) and \(y\) are positive integers with no common divisors.

    This page titled 2.1: Basic Notions is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Michael P. Hitchman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.