Skip to main content
Mathematics LibreTexts

3.5.1: Exercises 3.5

  • Page ID
    70571
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In Exercises \(\PageIndex{1}\) - \(\PageIndex{12}\), matrices \(A\) and \(\vec{b}\) are given.

    1. Give \(\text{det}(A)\) and \(\text{det}(A_{i})\) for all \(i\).
    2. Use Cramer’s Rule to solve \(A\vec{x}=\vec{b}\). If Cramer’s Rule cannot be used to find the solution, then state whether or not a solution exists.
    Exercise \(\PageIndex{1}\)

    \(A=\left[\begin{array}{cc}{7}&{-7}\\{-7}&{9}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{28}\\{-26}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=14,\:\text{det}(A_{1})=70,\:\text{det}(A_{2})=14\)
    2. \(\vec{x}=\left[\begin{array}{c}{5}\\{1}\end{array}\right]\)
    Exercise \(\PageIndex{2}\)

    \(A=\left[\begin{array}{cc}{9}&{5}\\{-4}&{-7}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{-45}\\{20}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=-43,\:\text{det}(A_{1})=215,\:\text{det}(A_{2})=0\)
    2. \(\vec{x}=\left[\begin{array}{c}{-5}\\{0}\end{array}\right]\)
    Exercise \(\PageIndex{3}\)

    \(A=\left[\begin{array}{cc}{-8}&{16}\\{10}&{-20}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{-48}\\{60}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=0,\:\text{det}(A_{1})=0,\:\text{det}(A_{2})=0\)
    2. Infinite solutions exist.
    Exercise \(\PageIndex{4}\)

    \(A=\left[\begin{array}{cc}{0}&{-6}\\{9}&{-10}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{6}\\{-17}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=54,\:\text{det}(A_{1})=-162,\:\text{det}(A_{2})=-54\)
    2. \(\vec{x}=\left[\begin{array}{c}{-3}\\{-1}\end{array}\right]\)
    Exercise \(\PageIndex{5}\)

    \(A=\left[\begin{array}{cc}{2}&{10}\\{-1}&{3}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{42}\\{19}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=16,\:\text{det}(A_{1})=-64,\:\text{det}(A_{2})=80\)
    2. \(\vec{x}=\left[\begin{array}{c}{-4}\\{5}\end{array}\right]\)
    Exercise \(\PageIndex{6}\)

    \(A=\left[\begin{array}{cc}{7}&{14}\\{-2}&{-4}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{-1}\\{4}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=0,\:\text{det}(A_{1})=-52,\:\text{det}(A_{2})=26\)
    2. No solution exists.
    Exercise \(\PageIndex{7}\)

    \(A=\left[\begin{array}{ccc}{3}&{0}&{-3}\\{5}&{4}&{4}\\{5}&{5}&{-4}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{24}\\{0}\\{31}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=-123,\:\text{det}(A_{1})=-492,\:\text{det}(A_{2})=123,\:\text{det}(A_{3})=492\)
    2. \(\vec{x}=\left[\begin{array}{c}{4}\\{-1}\\{-4}\end{array}\right]\)
    Exercise \(\PageIndex{8}\)

    \(A=\left[\begin{array}{ccc}{4}&{9}&{3}\\{-5}&{-2}&{-13}\\{-1}&{10}&{-13}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{-28}\\{35}\\{7}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=0,\:\text{det}(A_{1})=0,\:\text{det}(A_{2})=0,\:\text{det}(A_{3})=0\)
    2. Infinite solutions exist.
    Exercise \(\PageIndex{9}\)

    \(A=\left[\begin{array}{ccc}{4}&{-4}&{0}\\{5}&{1}&{-1}\\{3}&{-1}&{2}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{16}\\{22}\\{8}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=56,\:\text{det}(A_{1})=224,\:\text{det}(A_{2})=0,\:\text{det}(A_{3})=-112\)
    2. \(\vec{x}=\left[\begin{array}{c}{4}\\{0}\\{-2}\end{array}\right]\)
    Exercise \(\PageIndex{10}\)

    \(A=\left[\begin{array}{ccc}{1}&{0}&{-10}\\{4}&{-3}&{-10}\\{-9}&{6}&{-2}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{-40}\\{-94}\\{132}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=96,\:\text{det}(A_{1})=-960,\:\text{det}(A_{2})=768,\:\text{det}(A_{3})=288\)
    2. \(\vec{x}=\left[\begin{array}{c}{-10}\\{8}\\{3}\end{array}\right]\)
    Exercise \(\PageIndex{11}\)

    \(A=\left[\begin{array}{ccc}{7}&{-4}&{25}\\{-2}&{1}&{-7}\\{9}&{-7}&{34}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{-1}\\{-3}\\{5}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=0,\:\text{det}(A_{1})=147,\:\text{det}(A_{2})=-49,\:\text{det}(A_{3})=-49\)
    2. No solution exists.
    Exercise \(\PageIndex{12}\)

    \(A=\left[\begin{array}{ccc}{-6}&{-7}&{-7}\\{5}&{4}&{1}\\{5}&{4}&{8}\end{array}\right],\quad\vec{b}=\left[\begin{array}{c}{58}\\{-35}\\{-49}\end{array}\right]\)

    Answer
    1. \(\text{det}(A)=77,\:\text{det}(A_{1})=-385,\:\text{det}(A_{2})=-154,\:\text{det}(A_{3})=-154\)
    2. \(\vec{x}=\left[\begin{array}{c}{-5}\\{-2}\\{-2}\end{array}\right]\)

    3.5.1: Exercises 3.5 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?