Skip to main content
Mathematics LibreTexts

12.2: Mathematical Induction

  • Page ID
    58780
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Suppose one is presented with the following sequence of equations:

    \[\begin{align*} 1 &=1 \\ 1 + 3 &=4 \\ 1 + 3 + 5 &=9 \\ 1 + 3 + 5 + 7 &=16 \\ 1 + 3 + 5 + 7 + 9 &=25 \end{align*}\]

    It is clear that there is a pattern. The numbers on the right side of the equations are the squares \(1^{2}\), \(2^{2}\), \(3^{2}\), \(4^{2}\), and \(5^{2}\) and, in the equation with \(n^{2}\) on the right side, the left side is the sum of the first \(n\) odd numbers. The odd numbers are

    \[\begin{align*} 1 &= 2 \cdot 1 -1 \\ 3 &= 2 \cdot 2 -1 \\ 5 &= 2 \cdot 3 -1 \\ 7 &= 2 \cdot 4 -1 \\ 9 &= 2 \cdot 5 -1 \end{align*}\]

    and from this it is clear that the \(n\)th odd number is \(2n - 1\). Hence, at least for \(n = 1\), \(2\), \(3\), \(4\), or \(5\), the following is true:

    \[\label{eq:induction} 1 + 3 + \cdots + (2n-1) = n^2 \tag{\(S_n\)} \]

    The question arises whether the statement \ref{eq:induction} is true for \textit{every} \(n\). There is no hope of separately verifying all these statements because there are infinitely many of them. A more subtle approach is required. The idea is as follows: Suppose it is verified that the statement \(S_{n+1}\) will be true whenever \(S_{n}\) is true. That is, suppose we prove that, \textit{if} \(S_{n}\) is true, then it necessarily follows that \(S_{n+1}\) is also true. Then, if we can show that \(S_{1}\) is true, it follows that \(S_{2}\) is true, and from this that \(S_{3}\) is true, hence that \(S_{4}\) is true, and so on and on. This is the principle of induction. To express it more compactly, it is useful to have a short way to express the assertion ``If \(S_{n}\) is true, then \(S_{n+1}\) is true.'' As in Appendix \ref{chap:appbproofs}, we write this assertion as

    \[ S_n \Rightarrow S_{n+1} \]

    and read it as `` \(S_{n}\) implies \(S_{n+1}\).'' We can now state the principle of mathematical induction.

    Theorem \(\PageIndex{1}\)

    Theorem text

    {The Principle of Mathematical Induction}{034881} Suppose \(S_{n}\) is a statement about the natural number \(n\) for each \(n = 1, 2, 3, \dots\).\index{induction!mathematical induction}\index{mathematical induction}

    Suppose further that: \

    \item \(S_{1}\) is true. \item \(S_{n} \Rightarrow S_{n+1}\) for every \(n \geq 1\). \end{enumerate} Then \(S_{n}\) is true for every \(n \geq 1\). \end{theorem*} \noindent This is one of the most useful techniques in all of mathematics. It applies in a wide variety of situations, as the following examples illustrate. \begin{example}{}{034897} Show that \(1 + 2 + \dots + n = \frac{1}{2}n(n + 1)\) for \(n \geq 1\). \begin{solution} Let \(S_{n}\) be the statement: \(1 + 2 + \dots + n = \frac{1}{2}n(n + 1)\) for \(n \geq 1\). We apply induction. \

    \item \(S_{1}\) is true. The statement \(S_{1}\) is \(1 = \frac{1}{2}1(1 + 1)\), which is true. \item \(S_{n} \Rightarrow S_{n+1}\). We \textit{assume} that \(S_{n}\) is true for some \(n \geq 1\)---that is, that

    \[ 1+ 2 + \cdots + n = \frac{1}{2} n(n+1) \]

    } \end{enumerate} We must prove that the statement

    \[ S_{n+1} : 1 + 2 + \cdots + (n+1) = \frac{1}{2} (n+1)(n+2) \]

    } is also true, and we are entitled to use \(S_{n}\) to do so. Now the left side of \(S_{n+1}\) is the sum of the first \(n + 1\) positive integers. Hence the second-to-last term is \(n\), so we can write

    \begin{align*} 1 + 2 + \cdots + (n+1) & = (1 + 2+ \cdots + n)+(n+1) \\ &= \frac{1}{2} n(n+1) + (n+1) \quad \mbox{using } S_n \\ & = \frac{1}{2}(n+1)(n+2) \end{align*}

    This shows that \(S_{n+1}\) is true and so completes the induction. \end{solution} \end{example} In the verification that \(S_{n} \Rightarrow S_{n+1}\), we \textit{assume} that \(S_{n}\) is true and use it to deduce that \(S_{n+1}\) is true. The assumption that \(S_{n}\) is true is sometimes called the \textbf{induction hypothesis}\index{induction hypothesis}. \begin{example}{}{034928} If \(x\) is any number such that \(x \neq 1\), show that \(1 + x + x^2 + \cdots + x^n = \frac{x^{n+1}-1}{x-1}\) for \(n \geq 1\). \begin{solution} Let \(S_{n}\) be the statement: \(1 + x + x^2 + \cdots + x^n = \frac{x^{n+1}-1}{x-1}\). \

    \item \(S_{1}\) is true. \(S_{1}\) reads \( 1+x = \frac{x^2 -1}{x-1}\), which is true because \(x^{2} - 1 = (x - 1)(x + 1)\). \item \(S_{n} \Rightarrow S_{n+1}\). Assume the truth of \(S_{n}\) : \(1 + x + x^{2} + \dots + x^n = \frac{x^{n+1}-1}{x-1}\). \end{enumerate} We must \textit{deduce} from this the truth of \(S_{n+1}\): \(1 + x + x^{2} + \cdot + x^{n+1} = \frac{x^{n+2}-1}{x-1}\). Starting with the left side of \(S_{n+1}\) and using the induction hypothesis, we find

    \[\begin{align*} 1 +x + x^2 + \cdots + x^{n+1} & = (1 + x + x^2 + \cdots + x^n) + x^{n+1} \\ &= \frac{x^{n+1} -1 }{x-1} + x^{n+1} \\ &= \frac{x^{n+1} -1 + x^{n+1}(x-1)}{x-1} \\ &= \frac{x^{n+2}-1}{x-1} \end{align*}\]

    This shows that \(S_{n+1}\) is true and so completes the induction. \end{solution} \end{example} Both of these examples involve formulas for a certain sum, and it is often convenient to use summation notation. For example, \( \sum_{k=1}^{n} (2k-1)\) means that in the expression \((2k - 1)\), \(k\) is to be given the values \(k = 1, k = 2, k = 3, \dots , k = n\), and then the resulting \(n\) numbers are to be added. The same thing applies to other expressions involving \(k\). For example,

    \begin{align*} \sum_{k=1}^{n} k^3 &=1^3 + 2^3 + \cdots + n^3 \\ \sum_{k=1}^{5} (3k-1) &= (3 \cdot 1 -1) + (3 \cdot 2 - 1) + (3 \cdot 3 - 1) +(3 \cdot 4 - 1) + (3 \cdot 5 - 1) \end{align*}

    The next example involves this notation.

    Example \(\PageIndex{1}\)

    Show that \(\sum_{k=1}^{n} (3k^2-k) = n^2(n+1)\) for each \(n \geq 1\).

    Solution

    Let \(S_{n}\) be the statement: \(\sum_{k=1}^{n} (3k^2-k) = n^2(n+1)\). \

    \item \(S_{1}\) is true. \(S_{1}\) reads \((3 \cdot 1^2 - 1) = 1^{2}(1 + 1)\), which is true. \item \(S_{n} \Rightarrow S_{n+1}\). Assume that \(S_{n}\) is true. We must prove \(S_{n+1}\):

    \[\begin{align*} \sum_{k=1}^{n+1} (3k^2-k) &= \sum_{k=1}^{n}(3k^2-k) + [3(n+1)^2 - (n+1)] \\ & = n^2(n+1)+(n+1)[3(n+1)-1] \tag{using \(S_n\)} \\ & = (n+1)[n^2 + 3n+2]\\ & = (n+1)[(n+1)(n+2)] \\ & = (n+1)^2(n+2) \end{align*}\]

    \begin{example}{}{034966} \begin{solution}This proves that \(S_{n+1}\) is true. \end{solution} \end{example} \noindent We now turn to examples wherein induction is used to prove propositions that do not involve sums.

    Example \(\PageIndex{1}\)

    Show that \(7^n + 2\) is a multiple of \(3\) for all \(n \geq 1\).

    Solution

    \item \(S_{1}\) is true: \(7^1 + 2 = 9\) is a multiple of \(3\). \item \(S_{n} \Rightarrow S_{n+1}\). Assume that \(7^n + 2\) is a multiple of \(3\) for some \(n \geq 1\); say, \(7^n + 2 = 3m\) for some integer \(m\). Then

    \[ 7^{n+1} +2 = 7(7^n) +2 = 7(3m-2)+2 = 21m-12 = 3(7m-4) \]

    so \(7^{n+1} + 2\) is also a multiple of \(3\). This proves that \(S_{n+1}\) is true. \end{enumerate} \end{solution} \end{example} In all the foregoing examples, we have used the principle of induction starting at \(1\); that is, we have verified that \(S_{1}\) is true and that \(S_{n} \Rightarrow S_{n+1}\) for each \(n \geq 1\), and then we have concluded that \(S_{n}\) is true for every \(n \geq 1\). But there is nothing special about \(1\) here. If \(m\) is some fixed integer and we verify that

    \

    \item \(S_{m}\) is true.

    \item \(S_{n} \Rightarrow S_{n+1}\) for every \(n \geq m\). \end{enumerate}

    \noindent then it follows that \(S_{n}\) is true for every \(n \geq m\). This ``extended'' induction principle is just as plausible as the induction principle and can, in fact, be proved by induction. The next example will illustrate it. Recall that if \(n\) is a positive integer, the number \(n!\) (which is read ``\(n\)-factorial'') is the product

    \[ n! = n(n-1)(n-2)\cdots 3 \cdot 2 \cdot 1 \]

    of all the numbers from \(n\) to \(1\). Thus \(2! = 2\), \(3! = 6\), and so on. \begin{example}{}{035027} Show that \(2^n < n!\) for all \(n \geq 4\). \begin{solution} Observe that \(2^n < n!\) is actually false if \(n = 1, 2, 3\).

    \

    \item \(S_{4}\) is true. \(2^4 = 16 < 24 = 4!\). \item \(S_{n} \Rightarrow S_{n+1}\) if \(n \geq 4\). Assume that \(S_{n}\) is true; that is, \(2^n < n!\). Then

    \[ \begin{array}{rcll} 2^{n+1} & = &2 \cdot 2^n &\\ & < &2 \cdot n! & \mbox{because } 2^n < n! \\ & < &(n+1)n! & \mbox{because } 2< 2^{n}$

    For any integer \(m > 0\), \(m!n! < (m + n)!\)

    \[\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \leq 2\sqrt{n}-1\) \begin{sol} \(2\sqrt{n} - 1 + \frac{1}{\sqrt{n+1}} = \frac{2\sqrt{n^2+n}+1}{\sqrt{n+1}} - 1 < \frac{2(n+1)}{\sqrt{n+1}}-1 = 2\sqrt{n+1}-1\) \end{sol}\]

    \(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \geq \sqrt{n}\)

    \(n^{3} + (n + 1)^{3} + (n + 2)^{3}\) is a multiple of \(9\).

    \(5n + 3\) is a multiple of \(4\).

    \(n^{3} - n\) is a multiple of \(3\). \begin{sol} If \(n^{3} -n = 3k\), then \((n + 1)^{3} - (n + 1) = 3k + 3n^{2} + 3n = 3(k + n^{2} + n)\) \end{sol}

    \(3^{2n+1} + 2^{n+2}\) is a multiple of \(7\).

    Let \(B_{n} = 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n\)! Find a formula for \(B_{n}\) and prove it. \begin{sol} \(B_{n} = (n + 1)! - 1\) \end{sol}

    Let

    \[ A_n = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})\cdots (1-\frac{1}{n}) \]

    Find a formula for \(A_n\) and prove it.

    Suppose \(S_{n}\) is a statement about \(n\) for each \(n \geq 1\). Explain what must be done to prove that \(S_{n}\) is true for all \(n \geq 1\) if it is known that: \

    [label={\alph*.}] \item \(S_{n} \Rightarrow S_{n+2}\) for each \(n \geq 1\). \item \(S_{n} \Rightarrow S_{n+8}\) for each \(n \geq 1\). \item \(S_{n} \Rightarrow S_{n+1}\) for each \(n \geq 10\). \item Both \(S_{n}\) and \(S_{n+1} \Rightarrow S_{n+2}\) for each \(n \geq 1\). \end{enumerate} \begin{sol} \

    [label={\alph*.}] \setcounter{enumi}{1} \item Verify each of \(S_{1}, S_{2}, \dots, S_{8}\). \end{enumerate} \end{sol}

    If \(S_{n}\) is a statement for each \(n \geq 1\), argue that \(S_{n}\) is true for all \(n \geq 1\) if it is known that the following two conditions hold: \

    \item \(S_{n} \Rightarrow S_{n-1}\) for each \(n \geq 2\). \item \(S_{n}\) is true for infinitely many values of \(n\). \end{enumerate}

    Suppose a sequence \(a_{1}, a_{2}, \dots\) of numbers is given that satisfies: \

    \item \(a_{1} = 2\). \item \(a_{n+1} = 2a_{n}\) for each \(n \geq 1\). Formulate a theorem giving \(a_{n}\) in terms of \(n\), and prove your result by induction. \end{enumerate}

    Suppose a sequence \(a_{1}, a_{2}, \dots\) of numbers is given that satisfies: \

    \item \(a_{1} = b\). \item \(a_{n+1} = ca_{n} + b\) for \(n = 1, 2, 3, \dots\). Formulate a theorem giving \(a_{n}\) in terms of \(n\), and prove your result by induction. \end{enumerate}

    \

    [label={\alph*.}] \item Show that \(n^{2} \leq 2^{n}\) for all \(n \geq 4\). \item Show that \(n^{3} \leq 2^{n}\) for all \(n \geq 10\). \end{enumerate} \end{multicols}


    This page titled 12.2: Mathematical Induction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by W. Keith Nicholson via source content that was edited to the style and standards of the LibreTexts platform.