Skip to main content
Mathematics LibreTexts

5.6: Combinations of Operations with Fractions

  • Page ID
    48862
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Learning Objectives

    • gain a further understanding of the order of operations

    The Order of Operations

    To determine the value of a quantity such as

    \(\dfrac{1}{2} + \dfrac{5}{8} \cdot \dfrac{2}{15}\)

    where we have a combination of operations (more than one operation occurs), we must use the accepted order of operations.

    The Order of Operations:

    1. In the order (2), (3), (4) described below, perform all operations inside group­ing symbols: ( ), [ ], ( ), -. Work from the innermost set to the outermost set.
    2. Perform exponential and root operations.
    3. Perform all multiplications and divisions moving left to right.
    4. Perform all additions and subtractions moving left to right.

    Sample Set A

    Determine the value of each of the following quantities.

    \(\dfrac{1}{4} + \dfrac{5}{8} \cdot \dfrac{2}{15}\)

    Solution

    a. Multiply first.

    \(\dfrac{1}{4} + \dfrac{\begin{array} {c} {^1} \\ {\cancel{5}} \end{array}}{\begin{array} {c} {\cancel{8}} \\ {^4} \end{array}} \cdot \dfrac{\begin{array} {c} {^1} \\ {\cancel{2}} \end{array}}{\begin{array} {c} {\cancel{15}} \\ {^3} \end{array}} = \dfrac{1}{4} + \dfrac{1 \cdot 1}{4 \cdot 3} = \dfrac{1}{4} + \dfrac{1}{12}\)

    b. Now perform this addition. Find the LCD.

    \(\left \{ \begin{array} {c} {4 = 2^2} \\ {12 = 2^2 \cdot 3} \end{array} \right \} \text{ The LCD = } 2^2 \cdot 3 = 12\)

    \(\begin{array} {rcl} {\dfrac{1}{4} + \dfrac{1}{12}} & = & {\dfrac{1 \cdot 3}{12} + \dfrac{1}{12} = \dfrac{3}{12} + \dfrac{1}{12}} \\ {} & = & {\dfrac{3 + 1}{12} = \dfrac{4}{12} = \dfrac{1}{3}} \end{array}\)

    Thus, \(\dfrac{1}{4} + \dfrac{5}{8} \cdot \dfrac{2}{15} = \dfrac{1}{3}\)

    Sample Set A

    \(\dfrac{3}{5} + \dfrac{9}{44} (\dfrac{5}{9} - \dfrac{1}{4})\)

    Solution

    a. Operate within the parentheses first, \((\dfrac{5}{9} - \dfrac{1}{4})\)

    \(\left \{ \begin{array} {c} {9 = 3^2} \\ {4 = 2^2} \end{array} \right \} \text{ The LCD = } 2^2 \cdot 3^2 = 4 \cdot 9 = 36.\)

    \(\dfrac{5 \cdot 4}{36} - \dfrac{1 \cdot 9}{36} = \dfrac{20}{36} - \dfrac{9}{36} = \dfrac{20 - 9}{36} = \dfrac{11}{36}\)

    Now we have

    \(\dfrac{3}{5} + \dfrac{9}{44} (\dfrac{11}{36})\)

    b. Perform the multiplication.

    \(\dfrac{3}{5} + \dfrac{\begin{array} {c} {^1} \\ {\cancel{9}} \end{array}}{\begin{array} {c} {\cancel{44}} \\ {^4} \end{array}} \cdot \dfrac{\begin{array} {c} {^1} \\ {\cancel{11}} \end{array}}{\begin{array} {c} {\cancel{36}} \\ {^4} \end{array}} = \dfrac{3}{5} + \dfrac{1 \cdot 1}{4 \cdot 4} = \dfrac{3}{5} + \dfrac{1}{16}\)

    c. Now perform the addition. The LCD = 80.

    \(\dfrac{3}{5} + \dfrac{1}{16} = \dfrac{3 \cdot 16}{80} + \dfrac{1 \cdot 5}{80} = \dfrac{48}{80} + \dfrac{5}{80} = \dfrac{48 + 5}{80} = \dfrac{53}{80}\)

    Thus, \(\dfrac{3}{5} + \dfrac{9}{44} (\dfrac{5}{9} - \dfrac{1}{4}) = \dfrac{53}{80}\)

    Sample Set A

    \(8 - \dfrac{15}{426} (2 - 1 \dfrac{4}{15}) (3 \dfrac{1}{5} + 2 \dfrac{1}{8})\)

    Solution

    a. Work within each set of parentheses individually.

    \(\begin{array} {rcl} {2 - 1 \dfrac{4}{15}} & = & {2 \dfrac{1 \cdot 15 + 4}{15} = 2 - \dfrac{19}{15}} \\ {} & = & {\dfrac{30}{15} - \dfrac{19}{15} = \dfrac{30- 19}{15} = \dfrac{11}{15}} \\ {3 \dfrac{1}{5} + 2 \dfrac{1}{8}} & = & {\dfrac{3 \cdot 5 + 1}{5} + \dfrac{2 \cdot 8 + 1}{8}} \\ {} & = & {\dfrac{16}{5} + \dfrac{17}{8} \text{LCD = 40}} \\ {} & = & {\dfrac{16 \cdot 8}{40} + \dfrac{17 \cdot 5}{40}} \\ {} & = & {\dfrac{128}{40} + \dfrac{85}{40}} \\ {} & = & {\dfrac{128 + 85}{40}} \\ {} & = & {\dfrac{213}{40}} \end{array}\)

    Now we have

    \(8 - \dfrac{15}{426} (\dfrac{11}{15}) (\dfrac{213}{40})\)

    b. Now multiply.

    \(8 - \dfrac{\begin{array} {c} {^1} \\ {\cancel{15}} \end{array}}{\begin{array} {c} {\cancel{426}} \\ {^2} \end{array}} \cdot \dfrac{11}{\begin{array} {c} {\cancel{15}} \\ {^1} \end{array}} \cdot \dfrac{\begin{array} {c} {^1} \\ {\cancel{213}} \end{array}}{40} = 8 - \dfrac{1 \cdot 11 \cdot 1}{2 \cdot 1 \cdot 40} = 8 - \dfrac{11}{80}\)

    c. Now subtract.

    \(8 - \dfrac{11}{80} = \dfrac{80 \cdot 8}{80} - \dfrac{11}{80} = \dfrac{640}{80} - \dfrac{11}{80} = \dfrac{640 - 11}{80} = \dfrac{629}{80} \text{ or } 7 \dfrac{69}{80}\)

    Thus, \(8 - \dfrac{15}{426} (2 - 1 \dfrac{4}{15}) (3 \dfrac{1}{5} + 2 \dfrac{1}{8}) = 7 \dfrac{69}{80}\)

    Sample Set A

    \((\dfrac{3}{4})^2 \cdot \dfrac{8}{9} - \dfrac{5}{12}\)

    Solution

    a. Square \(\dfrac{3}{4}\).

    \((\dfrac{3}{4})^2 = \dfrac{3}{4} \cdot \dfrac{3}{4} = \dfrac{3 \cdot 3}{4 \cdot 4} = \dfrac{9}{16}\)

    Now we have

    \(\dfrac{9}{16} \cdot \dfrac{8}{9} - \dfrac{5}{12}\)

    b. Perform the multiplication.

    \(\dfrac{\begin{array} {c} {^1} \\ {\cancel{9}} \end{array}}{\begin{array} {c} {\cancel{16}} \\ {^2} \end{array}} \cdot \dfrac{\begin{array} {c} {^1} \\ {\cancel{8}} \end{array}}{\begin{array} {c} {\cancel{9}} \\ {^1} \end{array}} - \dfrac{5}{12} = \dfrac{1 \cdot 1}{2 \cdot 1} - \dfrac{5}{12} = \dfrac{1}{2} - \dfrac{5}{12}\)

    c. Now perform the subtraction.

    \(\dfrac{1}{2} - \dfrac{5}{12} = \dfrac{6}{12} - \dfrac{5}{12} = \dfrac{6 - 5}{12} = \dfrac{1}{12}\)

    Thus, \((\dfrac{4}{3})^2 \cdot \dfrac{8}{9} - \dfrac{5}{12} = \dfrac{1}{12}\)

    Sample Set A

    \(2 \dfrac{7}{8} + \sqrt{\dfrac{25}{36}} \div (2 \dfrac{1}{2} - 1 \dfrac{1}{3})\)

    Solution

    a. Begin by operating inside the parentheses.

    \(\begin{array} {rcl} {2 \dfrac{1}{2} - 1 \dfrac{1}{3}} & = & {\dfrac{2 \cdot 2 + 1}{2} - \dfrac{1 \cdot 3 + 1}{3} = \dfrac{5}{2} - \dfrac{4}{3}} \\ {} & = & {\dfrac{15}{6} - \dfrac{8}{6} = \dfrac{15 - 8}{6} = \dfrac{7}{6}} \end{array}\)

    b. Now simplify the square root.

    \(\sqrt{\dfrac{25}{36}} = \dfrac{5}{6} (\text{since} (\dfrac{5}{6})^2 = \dfrac{25}{36})\)

    Now we have

    \(2 \dfrac{7}{8} + \dfrac{5}{6} \div \dfrac{7}{6}\)

    c. Perform the division.

    \(2 \dfrac{7}{8} + \dfrac{5}{\begin{array} {c} {\cancel{6}} \\ {^1} \end{array}} \cdot \dfrac{\begin{array} {c} {^1} \\ {\cancel{6}} \end{array}}{7} = 2 \dfrac{7}{8} + \dfrac{5 \cdot 1}{1 \cdot 7} = 2 \dfrac{7}{8} + \dfrac{5}{7}\)

    d. Now perform the addition.

    \(\begin{array} {rcl} {2 \dfrac{7}{8} + \dfrac{5}{7}} & = & {\dfrac{2 \cdot 8 + 7}{8} + \dfrac{5}{7} = \dfrac{23}{8} + \dfrac{5}{7} \text{ LCD = }56.} \\ {} & = & {\dfrac{23 \cdot 7}{56} + \dfrac{5 \cdot 8}{56} = \dfrac{161}{56} + \dfrac{40}{56}} \\ {} & = & {\dfrac{161 + 40}{56} = \dfrac{201}{56} \text{ or } 3 \dfrac{33}{56}} \end{array}\)

    Thus, \(2 \dfrac{7}{8} + \sqrt{\dfrac{25}{36}} \div (2 \dfrac{1}{2} - 1 \dfrac{1}{3}) = 3 \dfrac{33}{56}\)

    Practice Set A

    Find the value of each of the following quantities.

    \(\dfrac{5}{16} \cdot \dfrac{1}{10} - \dfrac{1}{32}\)

    Answer

    0

    Practice Set A

    \(\dfrac{6}{7} \cdot \dfrac{21}{40} \div \dfrac{9}{10} + 5 \dfrac{1}{3}\)

    Answer

    \(\dfrac{35}{6}\) or \(5 \dfrac{5}{6}\)

    Practice Set A

    \(8\dfrac{7}{10} - 2(4 \dfrac{1}{2} - 3 \dfrac{2}{3})\)

    Answer

    \(\dfrac{211}{30}\) or \(7 \dfrac{1}{30}\)

    Practice Set A

    \(\dfrac{17}{18} - \dfrac{58}{30} (\dfrac{1}{4} - \dfrac{3}{32}) (1 - \dfrac{13}{29})\)

    Answer

    \(\dfrac{7}{9}\)

    Practice Set A

    \((\dfrac{1}{10} + 1 \dfrac{1}{2}) \div (1 \dfrac{4}{5} - 1 \dfrac{6}{25})\)

    Answer

    \(2 \dfrac{6}{7}\)

    Practice Set A

    \(\dfrac{\dfrac{2}{3} - \dfrac{3}{8} \cdot \dfrac{4}{9}}{\dfrac{7}{16} \cdot 1 \dfrac{1}{3} + 1 \dfrac{1}{4}}\)

    Answer

    \(\dfrac{3}{11}\)

    Practice Set A

    \((\dfrac{3}{8})^2 + \dfrac{3}{4} \cdot \dfrac{1}{8}\)

    Answer

    \(\dfrac{15}{64}\)

    Practice Set A

    \(\dfrac{2}{3} \cdot 2 \dfrac{1}{4} - \sqrt{\dfrac{4}{25}}\)

    Answer

    \(\dfrac{11}{10}\)

    Exercises

    Find each value.

    Exercise \(\PageIndex{1}\)

    \(\dfrac{4}{3} - \dfrac{1}{6} \cdot \dfrac{1}{2}\)

    Answer

    \(\dfrac{5}{4}\)

    Exercise \(\PageIndex{2}\)

    \(\dfrac{7}{9} - \dfrac{4}{5} \cdot \dfrac{5}{36}\)

    Exercise \(\PageIndex{3}\)

    \(2 \dfrac{2}{7} + \dfrac{5}{8} \div \dfrac{5}{16}\)

    Answer

    \(4 \dfrac{2}{7}\)

    Exercise \(\PageIndex{4}\)

    \(\dfrac{3}{16} \div \dfrac{9}{14} \cdot \dfrac{12}{21} + \dfrac{5}{6}\)

    Exercise \(\PageIndex{5}\)

    \(\dfrac{4}{25} \div \dfrac{8}{15} - \dfrac{7}{20} \div 2 \dfrac{1}{10}\)

    Answer

    \(\dfrac{2}{15}\)

    Exercise \(\PageIndex{6}\)

    \(\dfrac{2}{5} \cdot (\dfrac{1}{19} + \dfrac{3}{38})\)

    Exercise \(\PageIndex{7}\)

    \(\dfrac{3}{7} \cdot (\dfrac{3}{10} - \dfrac{1}{15})\)

    Answer

    \(\dfrac{1}{10}\)

    Exercise \(\PageIndex{8}\)

    \(\dfrac{10}{11} \cdot (\dfrac{8}{9} - \dfrac{2}{5}) + \dfrac{3}{25} \cdot (\dfrac{5}{3} + \dfrac{1}{4})\)

    Exercise \(\PageIndex{9}\)

    \(\dfrac{2}{7} \cdot (\dfrac{6}{7} - \dfrac{3}{28}) + 5 \dfrac{1}{3} \cdot (1 \dfrac{1}{4} - \dfrac{1}{8})\)

    Answer

    \(6 \dfrac{3}{14}\)

    Exercise \(\PageIndex{10}\)

    \(\dfrac{(\dfrac{6}{11} - \dfrac{1}{3}) \cdot (\dfrac{1}{21} + 2 \dfrac{13}{42})}{1 \dfrac{1}{5} + \dfrac{7}{40}}\)

    Exercise \(\PageIndex{11}\)

    \((\dfrac{1}{2})^2 + \dfrac{1}{8}\)

    Answer

    \(\dfrac{3}{8}\)

    Exercise \(\PageIndex{12}\)

    \((\dfrac{3}{5})^2 - \dfrac{3}{10}\)

    Exercise \(\PageIndex{13}\)

    \(\sqrt{\dfrac{36}{81}} + \dfrac{1}{3} \cdot \dfrac{2}{9}\)

    Answer

    \(\dfrac{20}{27}\)

    Exercise \(\PageIndex{14}\)

    \(\sqrt{\dfrac{49}{64}} - \sqrt{\dfrac{9}{4}}\)

    Exercise \(\PageIndex{15}\)

    \(\dfrac{2}{3} \cdot \sqrt{\dfrac{9}{4}} - \dfrac{15}{4} \cdot \sqrt{\dfrac{16}{225}}\)

    Answer

    0

    Exercise \(\PageIndex{16}\)

    \((\dfrac{3}{4})^2 + \sqrt{dfrac{25}{16}}\)

    Exercise \(\PageIndex{17}\)

    \((\dfrac{1}{3})^2 \cdot \sqrt{\dfrac{81}{25}} + \dfrac{1}{40} \div \dfrac{1}{8}\)

    Answer

    \(\dfrac{2}{5}\)

    Exercise \(\PageIndex{18}\)

    \((\sqrt{\dfrac{4}{49}})^2 + \dfrac{3}{7} \div 1 \dfrac{3}{4}\)

    Exercise \(\PageIndex{19}\)

    \((\sqrt{\dfrac{100}{121}})^2 + \dfrac{21}{(11)^2}\)

    Answer

    1

    Exercise \(\PageIndex{20}\)

    \(\sqrt{\dfrac{3}{8} + \dfrac{1}{64}} - \dfrac{1}{2} \div 1 \dfrac{1}{3}\)

    Exercise \(\PageIndex{21}\)

    \(\sqrt{\dfrac{1}{4}} \cdot (\dfrac{5}{6})^2 + \dfrac{9}{14} \cdot 2 \dfrac{1}{3} - \sqrt{\dfrac{1}{81}}\)

    Answer

    \(\dfrac{215}{72}\)

    Exercise \(\PageIndex{22}\)

    \(\sqrt{\dfrac{1}{9}} \cdot \sqrt{\dfrac{6 \dfrac{3}{8} + 2 \dfrac{5}{8}}{16}} + 7 \dfrac{7}{10}\)

    Exercise \(\PageIndex{23}\)

    \(\dfrac{3 \dfrac{3}{4} + \dfrac{4}{5} \cdot (\dfrac{1}{2})^3}{\dfrac{67}{240} + (\dfrac{1}{3})^4 \cdot (\dfrac{9}{10})}\)

    Answer

    \(\dfrac{252}{19}\)

    Exercise \(\PageIndex{24}\)

    \(\sqrt{\sqrt{\dfrac{16}{81}}} + \dfrac{1}{4} \cdot 6\)

    Exercise \(\PageIndex{25}\)

    \(\sqrt{\sqrt{\dfrac{81}{256}}} - \dfrac{3}{32} \cdot 1 \dfrac{1}{8}\)

    Answer

    \(\dfrac{165}{256}\)

    Exercises for Review

    Exercise \(\PageIndex{26}\)

    True or false: Our number system, the Hindu-Arabic number system, is a positional number system with base ten.

    Exercise \(\PageIndex{27}\)

    The fact that 1 times any whole number = that particular whole number illustrates which property of multiplication?

    Answer

    multiplicative identity

    Exercise \(\PageIndex{28}\)

    Convert \(8 \dfrac{6}{7}\) to an improper fraction.

    Exercise \(\PageIndex{29}\)

    Find the sum. \(\dfrac{3}{8} + \dfrac{4}{5} + \dfrac{5}{6}\).

    Answer

    \(\dfrac{241}{120}\) or \(2 \dfrac{1}{120}\)

    Exercise \(\PageIndex{30}\)

    Simplify \(\dfrac{6 + \dfrac{1}{8}}{6 - \dfrac{1}{8}}\).


    This page titled 5.6: Combinations of Operations with Fractions is shared under a CC BY license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .

    • Was this article helpful?