2.7.2: Key Concepts
- Page ID
- 118893
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Key Concepts
2.1 Use the Language of Algebra
| Operation | Notation | Say: | The result is… |
|---|---|---|---|
| Addition | the sum of and | ||
| Multiplication | The product of and | ||
| Subtraction | the difference of and | ||
| Division | divided by | The quotient of and |
- Equality Symbol
- is read as is equal to
- The symbol is called the equal sign.
- Inequality
- is read is less than
- is to the left of on the number line
- is read is greater than
- is to the right of on the number line
| Algebraic Notation | Say |
|---|---|
| is equal to | |
| is not equal to | |
| is less than | |
| is greater than | |
| is less than or equal to | |
| is greater than or equal to |
- Exponential Notation
- For any expression is a factor multiplied by itself times, if is a positive integer.
- means multiply factors of
- The expression of is read to the power.
Order of Operations When simplifying mathematical expressions perform the operations in the following order:
- Parentheses and other Grouping Symbols: Simplify all expressions inside the parentheses or other grouping symbols, working on the innermost parentheses first.
- Exponents: Simplify all expressions with exponents.
- Multiplication and Division: Perform all multiplication and division in order from left to right. These operations have equal priority.
- Addition and Subtraction: Perform all addition and subtraction in order from left to right. These operations have equal priority.
2.2 Evaluate, Simplify, and Translate Expressions
- Combine like terms.
- Step 1. Identify like terms.
- Step 2. Rearrange the expression so like terms are together.
- Step 3. Add the coefficients of the like terms
2.3 Solving Equations Using the Subtraction and Addition Properties of Equality
- Determine whether a number is a solution to an equation.
- Step 1. Substitute the number for the variable in the equation.
- Step 2. Simplify the expressions on both sides of the equation.
- Step 3. Determine whether the resulting equation is true. If it is true, the number is a solution.
- Subtraction Property of Equality
- For any numbers , , and ,
if then
- For any numbers , , and ,
- Solve an equation using the Subtraction Property of Equality.
- Step 1. Use the Subtraction Property of Equality to isolate the variable.
- Step 2. Simplify the expressions on both sides of the equation.
- Step 3. Check the solution.
- Addition Property of Equality
- For any numbers , , and ,
if then
- For any numbers , , and ,
- Solve an equation using the Addition Property of Equality.
- Step 1. Use the Addition Property of Equality to isolate the variable.
- Step 2. Simplify the expressions on both sides of the equation.
- Step 3. Check the solution.
2.4 Find Multiples and Factors
| Divisibility Tests | |
|---|---|
| A number is divisible by | |
| 2 | if the last digit is 0, 2, 4, 6, or 8 |
| 3 | if the sum of the digits is divisible by 3 |
| 4 | if the last two digits are a number divisible by 4 |
| 5 | if the last digit is 5 or 0 |
| 6 | if divisible by both 2 and 3 |
| 10 | if the last digit is 0 |
- Factors If , then and are factors of , and is the product of and .
- Find all the factors of a counting number.
- Step 1. Divide the number by each of the counting numbers, in order, until the quotient is smaller than the divisor.
- If the quotient is a counting number, the divisor and quotient are a pair of factors.
- If the quotient is not a counting number, the divisor is not a factor.
- Step 2. List all the factor pairs.
- Step 3. Write all the factors in order from smallest to largest.
- Step 1. Divide the number by each of the counting numbers, in order, until the quotient is smaller than the divisor.
- Determine if a number is prime.
- Step 1. Test each of the primes, in order, to see if it is a factor of the number.
- Step 2. Start with 2 and stop when the quotient is smaller than the divisor or when a prime factor is found.
- Step 3. If the number has a prime factor, then it is a composite number. If it has no prime factors, then the number is prime.
2.5 Prime Factorization and the Least Common Multiple
- Find the prime factorization of a composite number using the tree method.
- Step 1. Find any factor pair of the given number, and use these numbers to create two branches.
- Step 2. If a factor is prime, that branch is complete. Circle the prime.
- Step 3. If a factor is not prime, write it as the product of a factor pair and continue the process.
- Step 4. Write the composite number as the product of all the circled primes.
- Find the prime factorization of a composite number using the ladder method.
- Step 1. Divide the number by the smallest prime.
- Step 2. Continue dividing by that prime until it no longer divides evenly.
- Step 3. Divide by the next prime until it no longer divides evenly.
- Step 4. Continue until the quotient is a prime.
- Step 5. Write the composite number as the product of all the primes on the sides and top of the ladder.
- Find the LCM by listing multiples.
- Step 1. List the first several multiples of each number.
- Step 2. Look for multiples common to both lists. If there are no common multiples in the lists, write out additional multiples for each number.
- Step 3. Look for the smallest number that is common to both lists.
- Step 4. This number is the LCM.
- Find the LCM using the prime factors method.
- Step 1. Find the prime factorization of each number.
- Step 2. Write each number as a product of primes, matching primes vertically when possible.
- Step 3. Bring down the primes in each column.
- Step 4. Multiply the factors to get the LCM.

