Skip to main content
Mathematics LibreTexts

4.10.1: Review Exercises

  • Page ID
    118920
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Review Exercises

    Visualize Fractions

    In the following exercises, name the fraction of each figure that is shaded.

    574.
    A circle is shown. It is divided into 8 equal pieces. 5 pieces are shaded.
    575.
    A square is shown. It is divided into 9 equal pieces. 5 pieces are shaded.

    In the following exercises, name the improper fractions. Then write each improper fraction as a mixed number.

    576.
    Two squares are shown. Both are divided into four equal pieces. The square on the left has all 4 pieces shaded. The square on the right has one piece shaded.
    577.
    Two circles are shown. Both are divided into two equal pieces. The circle on the left has both pieces shaded. The circle on the right has one piece shaded.

    In the following exercises, convert the improper fraction to a mixed number.

    578.

    58 15 58 15

    579.

    63 11 63 11

    In the following exercises, convert the mixed number to an improper fraction.

    580.

    12 1 4 12 1 4

    581.

    9 4 5 9 4 5

    582.

    Find three fractions equivalent to 25.25. Show your work, using figures or algebra.

    583.

    Find three fractions equivalent to 43.43. Show your work, using figures or algebra.

    In the following exercises, locate the numbers on a number line.

    584.

    5 8 , 4 3 , 3 3 4 , 4 5 8 , 4 3 , 3 3 4 , 4

    585.

    1 4 , 1 4 , 1 1 3 , −1 1 3 , 7 2 , 7 2 1 4 , 1 4 , 1 1 3 , −1 1 3 , 7 2 , 7 2

    In the following exercises, order each pair of numbers, using << or >.>.

    586.

    −1 ___ 2 5 −1 ___ 2 5

    587.

    −2 1 2 ___ −3 −2 1 2 ___ −3

    Multiply and Divide Fractions

    In the following exercises, simplify.

    588.

    63 84 63 84

    589.

    90 120 90 120

    590.

    14 a 14 b 14 a 14 b

    591.

    8 x 8 y 8 x 8 y

    In the following exercises, multiply.

    592.

    2 5 · 8 13 2 5 · 8 13

    593.

    1 3 · 12 7 1 3 · 12 7

    594.

    2 9 · ( 45 32 ) 2 9 · ( 45 32 )

    595.

    6 m · 4 11 6 m · 4 11

    596.

    1 4 ( −32 ) 1 4 ( −32 )

    597.

    16 5 · 15 8 16 5 · 15 8

    In the following exercises, find the reciprocal.

    598.

    2 9 2 9

    599.

    15 4 15 4

    600.

    3 3

    601.

    1 4 1 4

    602.

    Fill in the chart.

    Opposite Absolute Value Reciprocal
    513513      
    310310      
    9494      
    −12−12      

    In the following exercises, divide.

    603.

    2 3 ÷ 1 6 2 3 ÷ 1 6

    604.

    ( 3 x 5 ) ÷ ( 2 y 3 ) ( 3 x 5 ) ÷ ( 2 y 3 )

    605.

    4 5 ÷ 3 4 5 ÷ 3

    606.

    8 ÷ 8 3 8 ÷ 8 3

    607.

    5 18 ÷ ( b 9 ) 5 18 ÷ ( b 9 )

    Multiply and Divide Mixed Numbers and Complex Fractions

    In the following exercises, perform the indicated operation.

    608.

    3 1 5 · 1 7 8 3 1 5 · 1 7 8

    609.

    −5 7 12 · 4 4 11 −5 7 12 · 4 4 11

    610.

    8 ÷ 2 2 3 8 ÷ 2 2 3

    611.

    8 2 3 ÷ 1 1 12 8 2 3 ÷ 1 1 12

    In the following exercises, translate the English phrase into an algebraic expression.

    612.

    the quotient of 88 and yy

    613.

    the quotient of VV and the difference of hh and 66

    In the following exercises, simplify the complex fraction

    614.

    5 8 4 5 5 8 4 5

    615.

    8 9 −4 8 9 −4

    616.

    n 4 3 8 n 4 3 8

    617.

    −1 5 6 1 12 −1 5 6 1 12

    In the following exercises, simplify.

    618.

    5 + 16 5 5 + 16 5

    619.

    8 · 4 5 2 3 · 12 8 · 4 5 2 3 · 12

    620.

    8 · 7 + 5 ( 8 10 ) 9 · 3 6 · 4 8 · 7 + 5 ( 8 10 ) 9 · 3 6 · 4

    Add and Subtract Fractions with Common Denominators

    In the following exercises, add.

    621.

    3 8 + 2 8 3 8 + 2 8

    622.

    4 5 + 1 5 4 5 + 1 5

    623.

    2 5 + 1 5 2 5 + 1 5

    624.

    15 32 + 9 32 15 32 + 9 32

    625.

    x 10 + 7 10 x 10 + 7 10

    In the following exercises, subtract.

    626.

    8 11 6 11 8 11 6 11

    627.

    11 12 5 12 11 12 5 12

    628.

    4 5 y 5 4 5 y 5

    629.

    31 30 7 30 31 30 7 30

    630.

    3 2 ( 3 2 ) 3 2 ( 3 2 )

    631.

    11 15 5 15 ( 2 15 ) 11 15 5 15 ( 2 15 )

    Add and Subtract Fractions with Different Denominators

    In the following exercises, find the least common denominator.

    632.

    1313 and 112112

    633.

    1313 and 4545

    634.

    815815 and 11201120

    635.

    34,16,34,16,and510510

    In the following exercises, change to equivalent fractions using the given LCD.

    636.

    1313 and 15,15, LCD =15=15

    637.

    3838 and 56,56, LCD =24=24

    638.

    916916 and 512,512, LCD =48=48

    639.

    13,3413,34 and 45,45, LCD =60=60

    In the following exercises, perform the indicated operations and simplify.

    640.

    1 5 + 2 3 1 5 + 2 3

    641.

    11 12 2 3 11 12 2 3

    642.

    9 10 3 4 9 10 3 4

    643.

    11 36 11 20 11 36 11 20

    644.

    22 25 + 9 40 22 25 + 9 40

    645.

    y 10 1 3 y 10 1 3

    646.

    2 5 + ( 5 9 ) 2 5 + ( 5 9 )

    647.

    4 11 ÷ 2 7 d 4 11 ÷ 2 7 d

    648.

    2 5 + ( 3 n 8 ) ( 2 9 n ) 2 5 + ( 3 n 8 ) ( 2 9 n )

    649.

    ( 2 3 ) 2 ( 5 8 ) 2 ( 2 3 ) 2 ( 5 8 ) 2

    650.

    ( 11 12 + 3 8 ) ÷ ( 5 6 1 10 ) ( 11 12 + 3 8 ) ÷ ( 5 6 1 10 )

    In the following exercises, evaluate.

    651.

    y45y45 when

    1. y=45y=45
    2. y=14y=14
    652.

    6mn26mn2 when m=34m=34 and n=13n=13

    Add and Subtract Mixed Numbers

    In the following exercises, perform the indicated operation.

    653.

    4 1 3 + 9 1 3 4 1 3 + 9 1 3

    654.

    6 2 5 + 7 3 5 6 2 5 + 7 3 5

    655.

    5 8 11 + 2 4 11 5 8 11 + 2 4 11

    656.

    3 5 8 + 3 7 8 3 5 8 + 3 7 8

    657.

    9 13 20 4 11 20 9 13 20 4 11 20

    658.

    2 3 10 1 9 10 2 3 10 1 9 10

    659.

    2 11 12 1 7 12 2 11 12 1 7 12

    660.

    8 6 11 2 9 11 8 6 11 2 9 11

    Solve Equations with Fractions

    In the following exercises, determine whether the each number is a solution of the given equation.

    661.

    x12=16x12=16:

    1. x=1x=1
    2. x=23x=23
    3. x=13x=13
    662.

    y+35=59y+35=59:

    1. y=12y=12
    2. y=5245y=5245
    3. y=245y=245

    In the following exercises, solve the equation.

    663.

    n + 9 11 = 4 11 n + 9 11 = 4 11

    664.

    x 1 6 = 7 6 x 1 6 = 7 6

    665.

    h ( 7 8 ) = 2 5 h ( 7 8 ) = 2 5

    666.

    x 5 = −10 x 5 = −10

    667.

    z = 23 z = 23

    In the following exercises, translate and solve.

    668.

    The sum of two-thirds and nn is 35.35.

    669.

    The difference of qq and one-tenth is 12.12.

    670.

    The quotient of pp and −4−4 is −8.−8.

    671.

    Three-eighths of yy is 24.24.


    4.10.1: Review Exercises is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?