Skip to main content
Mathematics LibreTexts

6.2: Understand Percent

  • Page ID
    114923
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives

    By the end of this section, you will be able to:

    • Use the definition of percent
    • Convert percents to fractions and decimals
    • Convert decimals and fractions to percents

    Be Prepared 6.1

    Before you get started, take this readiness quiz.

    Translate “the ratio of 3333 to 5”5” into an algebraic expression.
    If you missed this problem, review Table 2.7.

    Be Prepared 6.2

    Write 3535 as a decimal.
    If you missed this problem, review Example 5.28.

    Be Prepared 6.3

    Write 0.620.62 as a fraction.
    If you missed this problem, review Example 5.4.

    Use the Definition of Percent

    How many cents are in one dollar? There are 100100 cents in a dollar. How many years are in a century? There are 100100 years in a century. Does this give you a clue about what the word “percent” means? It is really two words, “per cent,” and means per one hundred. A percent is a ratio whose denominator is 100.100. We use the percent symbol %,%, to show percent.

    Percent

    A percent is a ratio whose denominator is 100.100.

    According to data from the American Association of Community Colleges (2015),Figure 6.2 shows. Out of the 100100 squares on the grid, 5757 are shaded, which we write as the ratio 57100.57100.

    The figure shows a hundred flat with 57 units shaded.
    Figure 6.2 Among every 100 100 community college students, 57 57 are female.

    Similarly, 25%25% means a ratio of 25100,3%25100,3% means a ratio of 31003100 and 100%100% means a ratio of 100100.100100. In words, "one hundred percent" means the total 100%100% is 100100,100100, and since 100100=1,100100=1, we see that 100%100% means 11 whole.

    Example 6.1

    According to the Public Policy Institute of California (2010),44%(2010),44% of parents of public school children would like their youngest child to earn a graduate degree. Write this percent as a ratio.

    Answer

    The amount we want to convert is 44%. 44%44%
    Write the percent as a ratio. Remember that percent means per 100. 4410044100

    Try It 6.1

    Write the percent as a ratio.

    According to a survey, 89%89% of college students have a smartphone.

    Try It 6.2

    Write the percent as a ratio.

    A study found that 72%72% of U.S. teens send text messages regularly.

    Example 6.2

    In 2007,2007, according to a U.S. Department of Education report, 2121 out of every 100100 first-time freshmen college students at 4-year4-year public institutions took at least one remedial course. Write this as a ratio and then as a percent.

    Answer

    The amount we want to convert is 2121 out of 100100. 2121 out of 100100
    Write as a ratio. 2110021100
    Convert the 21 per 100 to percent. 21%21%

    Try It 6.3

    Write as a ratio and then as a percent: The American Association of Community Colleges reported that 6262 out of 100100 full-time community college students balance their studies with full-time or part time employment.

    Try It 6.4

    Write as a ratio and then as a percent: In response to a student survey, 4141 out of 100100 Santa Ana College students expressed a goal of earning an Associate's degree or transferring to a four-year college.

    Convert Percents to Fractions and Decimals

    Since percents are ratios, they can easily be expressed as fractions. Remember that percent means per 100,100, so the denominator of the fraction is 100.100.

    How To

    Convert a percent to a fraction.

    1. Step 1. Write the percent as a ratio with the denominator 100.100.
    2. Step 2. Simplify the fraction if possible.

    Example 6.3

    Convert each percent to a fraction:

    1. 36%36%
    2. 125%125%
    Answer

    36%36%
    Write as a ratio with denominator 100. 3610036100
    Simplify. 925925
    125%125%
    Write as a ratio with denominator 100. 125100125100
    Simplify. 5454

    Try It 6.5

    Convert each percent to a fraction:

    1. 48%48%
    2. 110%110%

    Try It 6.6

    Convert each percent to a fraction:

    1. 64%64%
    2. 150%150%

    The previous example shows that a percent can be greater than 1.1. We saw that 125%125% means 125100,125100, or 54.54. These are improper fractions, and their values are greater than one.

    Example 6.4

    Convert each percent to a fraction:

    1. 24.5%24.5%
    2. 3313%3313%
    Answer

    24.5%24.5%
    Write as a ratio with denominator 100. 24.510024.5100
    Clear the decimal by multiplying numerator and denominator by 10. 24.5(10)100(10)24.5(10)100(10)
    Multiply. 24510002451000
    Rewrite showing common factors. 5·495·2005·495·200
    Simplify. 4920049200
    3313%3313%
    Write as a ratio with denominator 100. 33131003313100
    Write the numerator as an improper fraction. 10031001003100
    Rewrite as fraction division, replacing 100 with 10011001. 1003÷10011003÷1001
    Multiply by the reciprocal. 1003110010031100
    Simplify. 1313

    Try It 6.7

    Convert each percent to a fraction:

    1. 64.4%64.4%
    2. 6623%6623%

    Try It 6.8

    Convert each percent to a fraction:

    1. 42.5%42.5%
    2. 834%834%

    In Decimals, we learned how to convert fractions to decimals. To convert a percent to a decimal, we first convert it to a fraction and then change the fraction to a decimal.

    How To

    Convert a percent to a decimal.

    1. Step 1. Write the percent as a ratio with the denominator 100.100.
    2. Step 2. Convert the fraction to a decimal by dividing the numerator by the denominator.

    Example 6.5

    Convert each percent to a decimal:

    1. 6%6%
    2. 78%78%
    Answer

    Because we want to change to a decimal, we will leave the fractions with denominator 100100 instead of removing common factors.

    6%6%
    Write as a ratio with denominator 100. 61006100
    Change the fraction to a decimal by dividing the numerator by the denominator. 0.060.06
    78%78%
    Write as a ratio with denominator 100. 7810078100
    Change the fraction to a decimal by dividing the numerator by the denominator. 0.780.78

    Try It 6.9

    Convert each percent to a decimal:

    1. 9%9%
    2. 87%87%

    Try It 6.10

    Convert each percent to a decimal:

    1. 3%3%
    2. 91%91%

    Example 6.6

    Convert each percent to a decimal:

    1. 135%135%
    2. 12.5%12.5%
    Answer

    135%135%
    Write as a ratio with denominator 100. 135100135100
    Change the fraction to a decimal by dividing the numerator by the denominator. 1.351.35
    12.5%12.5%
    Write as a ratio with denominator 100. 12.510012.5100
    Change the fraction to a decimal by dividing the numerator by the denominator. 0.1250.125

    Try It 6.11

    Convert each percent to a decimal:

    1. 115%115%
    2. 23.5%23.5%

    Try It 6.12

    Convert each percent to a decimal:

    1. 123%123%
    2. 16.8%16.8%

    Let's summarize the results from the previous examples in Table 6.1, and look for a pattern we could use to quickly convert a percent number to a decimal number.

    Percent Decimal
    6%6% 0.060.06
    78%78% 0.780.78
    135%135% 1.351.35
    12.5%12.5% 0.1250.125
    Table 6.1

    Do you see the pattern?

    To convert a percent number to a decimal number, we move the decimal point two places to the left and remove the %% sign. (Sometimes the decimal point does not appear in the percent number, but just like we can think of the integer 66 as 6.0,6.0, we can think of 6%6% as 6.0%.6.0%.) Notice that we may need to add zeros in front of the number when moving the decimal to the left.

    Figure 6.3 uses the percents in Table 6.1 and shows visually how to convert them to decimals by moving the decimal point two places to the left.

    The figures shows two columns and five rows . The  first row is a header row and it labels each column “Percent” and “Decimal”. Under the “Percent” column are the values: 6%, 78%, 135%, 12.5%. Under the “Decimal” column are the values: 0.06, 0.78, 1.35, 0.125. There are two jumps for each percent to show how to convert it to a decimal.
    Figure 6.3

    Example 6.7

    Among a group of business leaders, 77%77% believe that poor math and science education in the U.S. will lead to higher unemployment rates.

    Convert the percent to: a fraction a decimal

    Answer

    77%77%
    Write as a ratio with denominator 100. 7710077100
    7710077100
    Change the fraction to a decimal by dividing the numerator by the denominator. 0.770.77

    Try It 6.13

    Convert the percent to: a fraction and a decimal

    Twitter's share of web traffic jumped 24%24% when one celebrity tweeted live on air.

    Try It 6.14

    Convert the percent to: ⓐ a fraction and ⓑ a decimal

    The U.S. Census estimated that in 2013,44%2013,44% of the population of Boston age 2525 or older have a bachelor's or higher degrees.

    Example 6.8

    There are four suits of cards in a deck of cards—hearts, diamonds, clubs, and spades. The probability of randomly choosing a heart from a shuffled deck of cards is 25%.25%. Convert the percent to:

    1. a fraction
    2. a decimal
    The figure shows someone holding a deck of cards.
    Figure 6.4 (credit: Riles32807, Wikimedia Commons)
    Answer

    25%25%
    Write as a ratio with denominator 100. 2510025100
    Simplify. 1414
    1414
    Change the fraction to a decimal by dividing the numerator by the denominator. 0.250.25

    Try It 6.15

    Convert the percent to: a fraction, and a decimal

    The probability that it will rain Monday is 30%.30%.

    Try It 6.16

    Convert the percent to: a fraction, and a decimal

    The probability of getting heads three times when tossing a coin three times is 12.5%.12.5%.

    Convert Decimals and Fractions to Percents

    To convert a decimal to a percent, remember that percent means per hundred. If we change the decimal to a fraction whose denominator is 100,100, it is easy to change that fraction to a percent.

    How To

    Convert a decimal to a percent.

    1. Step 1. Write the decimal as a fraction.
    2. Step 2. If the denominator of the fraction is not 100,100, rewrite it as an equivalent fraction with denominator 100.100.
    3. Step 3. Write this ratio as a percent.

    Example 6.9

    Convert each decimal to a percent: 0.050.05 0.830.83

    Answer

    0.050.05
    Write as a fraction. The denominator is 100. 51005100
    Write this ratio as a percent. 5%5%
    0.830.83
    The denominator is 100. 8310083100
    Write this ratio as a percent. 83%83%

    Try It 6.17

    Convert each decimal to a percent: 0.010.01 0.17.0.17.

    Try It 6.18

    Convert each decimal to a percent: 0.040.04 0.410.41

    To convert a mixed number to a percent, we first write it as an improper fraction.

    Example 6.10

    Convert each decimal to a percent: 1.051.05 0.0750.075

    Answer

    0.050.05
    Write as a fraction. 1510015100
    Write as an improper fraction. The denominator is 100. 105100105100
    Write this ratio as a percent. 105%105%

    Notice that since 1.05>1,1.05>1, the result is more than 100%.100%.

    0.0750.075
    Write as a fraction. The denominator is 1,000. 751,000751,000
    Divide the numerator and denominator by 10, so that the denominator is 100. 7.51007.5100
    Write this ratio as a percent. 7.5%7.5%

    Try It 6.19

    Convert each decimal to a percent: 1.751.75 0.08250.0825

    Try It 6.20

    Convert each decimal to a percent: 2.252.25 0.09250.0925

    Let's summarize the results from the previous examples in Table 6.2 so we can look for a pattern.

    Decimal Percent
    0.050.05 5%5%
    0.830.83 83%83%
    1.051.05 105%105%
    0.0750.075 7.5%7.5%
    Table 6.2

    Do you see the pattern? To convert a decimal to a percent, we move the decimal point two places to the right and then add the percent sign.

    Figure 6.5 uses the decimal numbers in Table 6.2 and shows visually to convert them to percents by moving the decimal point two places to the right and then writing the %% sign.

    The figure shows two columns and five rows. The  first row is a header row and it labels each column “Decimal” and “Percent”. Under the “Decimal” column are the values: 0.05, 0.83, 1.05, 0.075, 0.3. Under the “Percent” column are the values: 5%, 83%, 105%, 7.5%, 30%. There are two jumps for each decimal to show how to convert it to a percent.
    Figure 6.5

    In Decimals, we learned how to convert fractions to decimals. Now we also know how to change decimals to percents. So to convert a fraction to a percent, we first change it to a decimal and then convert that decimal to a percent.

    How To

    Convert a fraction to a percent.

    1. Step 1. Convert the fraction to a decimal.
    2. Step 2. Convert the decimal to a percent.

    Example 6.11

    Convert each fraction or mixed number to a percent: 3434 118118 215215

    Answer

    To convert a fraction to a decimal, divide the numerator by the denominator.

    Change to a decimal. 3434
    Write as a percent by moving the decimal two places. .
    75%75%
    Change to a decimal. 118118
    Write as a percent by moving the decimal two places. .
    137.5%137.5%
    Write as an improper fraction. 215215
    Change to a decimal. 115115
    Write as a percent. .
    220%220%

    Notice that we needed to add zeros at the end of the number when moving the decimal two places to the right.

    Try It 6.21

    Convert each fraction or mixed number to a percent: 5858 114114 325325

    Try It 6.22

    Convert each fraction or mixed number to a percent: 7878 9494 135135

    Sometimes when changing a fraction to a decimal, the division continues for many decimal places and we will round off the quotient. The number of decimal places we round to will depend on the situation. If the decimal involves money, we round to the hundredths place. For most other cases in this book we will round the number to the nearest thousandth, so the percent will be rounded to the nearest tenth.

    Example 6.12

    Convert 5757 to a percent.

    Answer

    To change a fraction to a decimal, we divide the numerator by the denominator.

    5757
    Change to a decimal—rounding to the nearest thousandth. 0.7140.714
    Write as a percent. 71.4%71.4%

    Try It 6.23

    Convert the fraction to a percent: 3737

    Try It 6.24

    Convert the fraction to a percent: 4747

    When we first looked at fractions and decimals, we saw that some fractions converted to a repeating decimal. For example, when we converted the fraction 4343 to a decimal, we wrote the answer as 1.3¯.1.3¯. We will use this same notation, as well as fraction notation, when we convert fractions to percents in the next example.

    Example 6.13

    An article in a medical journal claimed that approximately 1313 of American adults are obese. Convert the fraction 1313 to a percent.

    Answer

    1313
    Change to a decimal. .
    Write as a repeating decimal. 0.3330.333
    Write as a percent. 3313%3313%

    We could also write the percent as 33.3_%33.3_%.

    Try It 6.25

    Convert the fraction to a percent:

    According to the U.S. Census Bureau, about 1919 of United States housing units have just 11 bedroom.

    Try It 6.26

    Convert the fraction to a percent:

    According to the U.S. Census Bureau, about 1616 of Colorado residents speak a language other than English at home.

    Section 6.1 Exercises

    Practice Makes Perfect

    Use the Definition of Percents

    In the following exercises, write each percent as a ratio.

    1.

    In 2014,2014, the unemployment rate for those with only a high school degree was 6.0%.6.0%.

    2.

    In 2015,2015, among the unemployed, 29%29% were long-term unemployed.

    3.

    The unemployment rate for those with Bachelor's degrees was 3.2%3.2% in 2014.2014.

    4.

    The unemployment rate in Michigan in 20142014 was 7.3%.7.3%.

    In the following exercises, write as

    1. a ratio and
    2. a percent
    5.

    5757 out of 100100 nursing candidates received their degree at a community college.

    6.

    8080 out of 100100 firefighters and law enforcement officers were educated at a community college.

    7.

    4242 out of 100100 first-time freshmen students attend a community college.

    8.

    7171 out of 100100 full-time community college faculty have a master's degree.

    Convert Percents to Fractions and Decimals

    In the following exercises, convert each percent to a fraction and simplify all fractions.

    9.

    4% 4%

    10.

    8% 8%

    11.

    17% 17%

    12.

    19% 19%

    13.

    52% 52%

    14.

    78% 78%

    15.

    125% 125%

    16.

    135% 135%

    17.

    37.5% 37.5%

    18.

    42.5% 42.5%

    19.

    18.4% 18.4%

    20.

    46.4% 46.4%

    21.

    9 1 2 % 9 1 2 %

    22.

    8 1 2 % 8 1 2 %

    23.

    5 1 3 % 5 1 3 %

    24.

    6 2 3 % 6 2 3 %

    In the following exercises, convert each percent to a decimal.

    25.

    5% 5%

    26.

    9% 9%

    27.

    1% 1%

    28.

    2% 2%

    29.

    63% 63%

    30.

    71% 71%

    31.

    40% 40%

    32.

    50% 50%

    33.

    115% 115%

    34.

    125% 125%

    35.

    150% 150%

    36.

    250% 250%

    37.

    21.4% 21.4%

    38.

    39.3% 39.3%

    39.

    7.8% 7.8%

    40.

    6.4% 6.4%

    In the following exercises, convert each percent to

    1. a simplified fraction and
    2. a decimal
    41.

    In 2010,1.5%2010,1.5% of home sales had owner financing. (Source: Bloomberg Businessweek, 5/23–29/2011)

    42.

    In 2000,4.2%2000,4.2% of the United States population was of Asian descent. (Source: www.census.gov)

    43.

    According to government data, in 20132013 the number of cell phones in India was 70.23%70.23% of the population.

    44.

    According to the U.S. Census Bureau, among Americans age 2525 or older who had doctorate degrees in 2014,37.1%2014,37.1% are women.

    45.

    A couple plans to have two children. The probability they will have two girls is 25%.25%.

    46.

    Javier will choose one digit at random from 00 through 9.9. The probability he will choose 33 is 10%.10%.

    47.

    According to the local weather report, the probability of thunderstorms in New York City on July 1515 is 60%.60%.

    48.

    A club sells 5050 tickets to a raffle. Osbaldo bought one ticket. The probability he will win the raffle is 2%.2%.

    Convert Decimals and Fractions to Percents

    In the following exercises, convert each decimal to a percent.

    49.

    0.01 0.01

    50.

    0.03 0.03

    51.

    0.18 0.18

    52.

    0.15 0.15

    53.

    1.35 1.35

    54.

    1.56 1.56

    55.

    3 3

    56.

    4 4

    57.

    0.009 0.009

    58.

    0.008 0.008

    59.

    0.0875 0.0875

    60.

    0.0625 0.0625

    61.

    1.5 1.5

    62.

    2.2 2.2

    63.

    2.254 2.254

    64.

    2.317 2.317

    In the following exercises, convert each fraction to a percent.

    65.

    1 4 1 4

    66.

    1 5 1 5

    67.

    3 8 3 8

    68.

    5 8 5 8

    69.

    7 4 7 4

    70.

    9 8 9 8

    71.

    6 4 5 6 4 5

    72.

    5 1 4 5 1 4

    73.

    5 12 5 12

    74.

    11 12 11 12

    75.

    2 2 3 2 2 3

    76.

    1 2 3 1 2 3

    77.

    3 7 3 7

    78.

    6 7 6 7

    79.

    5 9 5 9

    80.

    4 9 4 9

    In the following exercises, convert each fraction to a percent.

    81.

    1414 of washing machines needed repair.

    82.

    1515 of dishwashers needed repair.

    In the following exercises, convert each fraction to a percent.

    83.

    According to the National Center for Health Statistics, in 2012,7202012,720 of American adults were obese.

    84.

    The U.S. Census Bureau estimated that in 2013,85%2013,85% of Americans lived in the same house as they did 11 year before.

    In the following exercises, complete the table.

    85.
    Fraction Decimal Percent
    1212
    0.450.45
    18%18%
    1313
    0.0080.008
    22
    Table 6.3
    86.
    Fraction Decimal Percent
    1414
    0.650.65
    22%22%
    2323
    0.0040.004
    33
    Table 6.4

    Everyday Math

    87.

    Sales tax Felipa says she has an easy way to estimate the sales tax when she makes a purchase. The sales tax in her city is 9.05%.9.05%. She knows this is a little less than 10%.10%.

    1. Convert 10%10% to a fraction.
    2. Use your answer from to estimate the sales tax Felipa would pay on a $95$95 dress.
    88.

    Savings Ryan has 25%25% of each paycheck automatically deposited in his savings account.

    1. Write 25%25% as a fraction.
    2. Use your answer from to find the amount that goes to savings from Ryan's $2,400$2,400 paycheck.

    Amelio is shopping for textbooks online. He found three sellers that are offering a book he needs for the same price, including shipping. To decide which seller to buy from he is comparing their customer satisfaction ratings. The ratings are given in the chart.

    Use the chart to answer the following questions

    Seller Rating
    AA 4/54/5
    BB 3.5/43.5/4
    CC 85%85%
    89.

    Write seller C’sC’s rating as a fraction and a decimal.

    90.

    Write seller B’sB’s rating as a percent and a decimal.

    91.

    Write seller A’sA’s rating as a percent and a decimal.

    92.

    Which seller should Amelio buy from and why?

    Writing Exercises

    93.

    Convert 25%,50%,75%,and100%25%,50%,75%,and100% to fractions. Do you notice a pattern? Explain what the pattern is.

    94.

    Convert 110,210,310,410,510,610,710,810,110,210,310,410,510,610,710,810, and 910910 to percents. Do you notice a pattern? Explain what the pattern is.

    95.

    When the Szetos sold their home, the selling price was 500%500% of what they had paid for the house 30 years30 years ago. Explain what 500%500% means in this context.

    96.

    According to cnn.com, cell phone use in 20082008 was 600%600% of what it had been in 2001.2001. Explain what 600%600% means in this context.

    Self Check

    After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

    .

    If most of your checks were:

    …confidently. Congratulations! You have achieved the objectives in this section. Reflect on the study skills you used so that you can continue to use them. What did you do to become confident of your ability to do these things? Be specific.

    …with some help. This must be addressed quickly because topics you do not master become potholes in your road to success. In math, every topic builds upon previous work. It is important to make sure you have a strong foundation before you move on. Whom can you ask for help? Your fellow classmates and instructor are good resources. Is there a place on campus where math tutors are available? Can your study skills be improved?

    …no—I don’t get it! This is a warning sign and you must not ignore it. You should get help right away or you will quickly be overwhelmed. See your instructor as soon as you can to discuss your situation. Together you can come up with a plan to get you the help you need.


    This page titled 6.2: Understand Percent is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax.

    • Was this article helpful?