Skip to main content
Mathematics LibreTexts

10.3: Use Multiplication Properties of Exponents

  • Page ID
    115001
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives

    By the end of this section, you will be able to:

    • Simplify expressions with exponents
    • Simplify expressions using the Product Property of Exponents
    • Simplify expressions using the Power Property of Exponents
    • Simplify expressions using the Product to a Power Property
    • Simplify expressions by applying several properties
    • Multiply monomials

    Be Prepared 10.4

    Before you get started, take this readiness quiz.

    Simplify: 34·34.34·34.
    If you missed the problem, review Example 4.25.

    Be Prepared 10.5

    Simplify: (−2)(−2)(−2).(−2)(−2)(−2).
    If you missed the problem, review Example 3.52.

    Simplify Expressions with Exponents

    Remember that an exponent indicates repeated multiplication of the same quantity. For example, 2424 means to multiply four factors of 2,2, so 2424 means 2·2·2·2.2·2·2·2. This format is known as exponential notation.

    Exponential Notation

    On the left side, a raised to the m is shown. The m is labeled in blue as an exponent. The a is labeled in red as the base. On the right, it says a to the m means multiply m factors of a. Below this, it says a to the m equals a times a times a times a, with m factors written below in blue.

    This is read aa to the mthmth power.

    In the expression am,am, the exponent tells us how many times we use the base aa as a factor.

    On the left side, 7 to the 3rd power is shown. Below is 7 times 7 times 7, with 3 factors written below. On the right side, parentheses negative 8 to the 5th power is shown. Below is negative 8 times negative 8 times negative 8 times negative 8 times negative 8, with 5 factors written below.

    Before we begin working with variable expressions containing exponents, let’s simplify a few expressions involving only numbers.

    Example 10.11

    Simplify:

    1. 5353
    2. 9191
    Answer

    5353
    Multiply 3 factors of 5. 5·5·55·5·5
    Simplify. 125125
    9191
    Multiply 1 factor of 9. 99

    Try It 10.21

    Simplify:

    1. 4343
    2. 111111

    Try It 10.22

    Simplify:

    1. 3434
    2. 211211

    Example 10.12

    Simplify:

    1. (78)2(78)2
    2. (0.74)2(0.74)2
    Answer

    (78)2(78)2
    Multiply two factors. (78)(78)(78)(78)
    Simplify. 49644964
    (0.74)2(0.74)2
    Multiply two factors. (0.74)(0.74)(0.74)(0.74)
    Simplify. 0.54760.5476

    Try It 10.23

    Simplify:

    1. (58)2(58)2
    2. (0.67)2(0.67)2

    Try It 10.24

    Simplify:

    1. (25)3(25)3
    2. (0.127)2(0.127)2

    Example 10.13

    Simplify:

    1. (−3)4(−3)4
    2. −34−34
    Answer

    (−3)4(−3)4
    Multiply four factors of −3. (−3)(−3)(−3)(−3)(−3)(−3)(−3)(−3)
    Simplify. 8181
    −34−34
    Multiply two factors. (3·3·3·3)(3·3·3·3)
    Simplify. −81−81

    Notice the similarities and differences in parts and . Why are the answers different? In part the parentheses tell us to raise the (−3) to the 4th power. In part we raise only the 3 to the 4th power and then find the opposite.

    Try It 10.25

    Simplify:

    1. (−2)4(−2)4
    2. −24−24

    Try It 10.26

    Simplify:

    1. (−8)2(−8)2
    2. −82−82

    Simplify Expressions Using the Product Property of Exponents

    You have seen that when you combine like terms by adding and subtracting, you need to have the same base with the same exponent. But when you multiply and divide, the exponents may be different, and sometimes the bases may be different, too. We’ll derive the properties of exponents by looking for patterns in several examples. All the exponent properties hold true for any real numbers, but right now we will only use whole number exponents.

    First, we will look at an example that leads to the Product Property.

    .
    What does this mean?

    How many factors altogether?
    .
    So, we have .
    Notice that 5 is the sum of the exponents, 2 and 3. .
    We write: x2x3x2x3
    x2+3x2+3
    x5x5

    The base stayed the same and we added the exponents. This leads to the Product Property for Exponents.

    Product Property of Exponents

    If aa is a real number and m,nm,n are counting numbers, then

    am·an=am+nam·an=am+n

    To multiply with like bases, add the exponents.

    An example with numbers helps to verify this property.

    22·23=?22+34·8=?2532=3222·23=?22+34·8=?2532=32

    Example 10.14

    Simplify: x5·x7.x5·x7.

    Answer

    x5·x7x5·x7
    Use the product property, am·an=am+n.am·an=am+n. .
    Simplify. x12x12

    Try It 10.27

    Simplify: x7·x8.x7·x8.

    Try It 10.28

    Simplify: x5·x11.x5·x11.

    Example 10.15

    Simplify: b4·b.b4·b.

    Answer

    b4·bb4·b
    Rewrite, b=b1.b=b1. b4·b1b4·b1
    Use the product property, am·an=am+n.am·an=am+n. .
    Simplify. b5b5

    Try It 10.29

    Simplify: p9·p.p9·p.

    Try It 10.30

    Simplify: m·m7.m·m7.

    Example 10.16

    Simplify: 27·29.27·29.

    Answer

    27·2927·29
    Use the product property, am·an=am+n.am·an=am+n. .
    Simplify. 216216

    Try It 10.31

    Simplify: 6·69.6·69.

    Try It 10.32

    Simplify: 96·99.96·99.

    Example 10.17

    Simplify: y17·y23.y17·y23.

    Answer

    y17·y23y17·y23
    Notice, the bases are the same, so add the exponents. .
    Simplify. y40y40

    Try It 10.33

    Simplify: y24·y19.y24·y19.

    Try It 10.34

    Simplify: z15·z24.z15·z24.

    We can extend the Product Property of Exponents to more than two factors.

    Example 10.18

    Simplify: x3·x4·x2.x3·x4·x2.

    Answer

    x3·x4·x2x3·x4·x2
    Add the exponents, since the bases are the same. .
    Simplify. x9x9

    Try It 10.35

    Simplify: x7·x5·x9.x7·x5·x9.

    Try It 10.36

    Simplify: y3·y8·y4.y3·y8·y4.

    Simplify Expressions Using the Power Property of Exponents

    Now let’s look at an exponential expression that contains a power raised to a power. See if you can discover a general property.

    .
    .
    What does this mean?

    How many factors altogether?
    .
    So, we have .
    Notice that 6 is the product of the exponents, 2 and 3. .
    We write: (x2)3(x2)3
    x23x23
    x6x6

    We multiplied the exponents. This leads to the Power Property for Exponents.

    Power Property of Exponents

    If aa is a real number and m,nm,n are whole numbers, then

    (am)n=am·n(am)n=am·n

    To raise a power to a power, multiply the exponents.

    An example with numbers helps to verify this property.

    (52)3=?52·3(25)3=?5615,625=15,625(52)3=?52·3(25)3=?5615,625=15,625

    Example 10.19

    Simplify:

    1. (x5)7(x5)7
    2. (36)8(36)8
    Answer

    (x5)7(x5)7
    Use the Power Property, (am)n=am·n.(am)n=am·n. .
    Simplify. x35x35
    (36)8(36)8
    Use the Power Property, (am)n=am·n.(am)n=am·n. .
    Simplify. 348348

    Try It 10.37

    Simplify:

    1. (x7)4(x7)4
    2. (74)8(74)8

    Try It 10.38

    Simplify:

    1. (x6)9(x6)9
    2. (86)7(86)7

    Simplify Expressions Using the Product to a Power Property

    We will now look at an expression containing a product that is raised to a power. Look for a pattern.

    (2x)3(2x)3
    What does this mean? 2x·2x·2x2x·2x·2x
    We group the like factors together. 2·2·2·x·x·x2·2·2·x·x·x
    How many factors of 2 and of x?x? 23·x323·x3
    Notice that each factor was raised to the power. (2x)3is23·x3(2x)3is23·x3
    We write: (2x)3(2x)3
    23·x323·x3

    The exponent applies to each of the factors. This leads to the Product to a Power Property for Exponents.

    Product to a Power Property of Exponents

    If aa and bb are real numbers and mm is a whole number, then

    (ab)m=ambm(ab)m=ambm

    To raise a product to a power, raise each factor to that power.

    An example with numbers helps to verify this property:

    (2·3)2=?22·3262=?4·936=36(2·3)2=?22·3262=?4·936=36

    Example 10.20

    Simplify: (−11x)2.(−11x)2.

    Answer

    (−11x)2(−11x)2
    Use the Power of a Product Property, (ab)m=ambm.(ab)m=ambm. .
    Simplify. 121x2121x2

    Try It 10.39

    Simplify: (−14x)2.(−14x)2.

    Try It 10.40

    Simplify: (−12a)2.(−12a)2.

    Example 10.21

    Simplify: (3xy)3.(3xy)3.

    Answer

    (3xy)3(3xy)3
    Raise each factor to the third power. .
    Simplify. 27x3y327x3y3

    Try It 10.41

    Simplify: (−4xy)4.(−4xy)4.

    Try It 10.42

    Simplify: (6xy)3.(6xy)3.

    Simplify Expressions by Applying Several Properties

    We now have three properties for multiplying expressions with exponents. Let’s summarize them and then we’ll do some examples that use more than one of the properties.

    Properties of Exponents

    If a,ba,b are real numbers and m,nm,n are whole numbers, then

    Example 10.22

    Simplify: (x2)6(x5)4.(x2)6(x5)4.

    Answer

    (x2)6(x5)4(x2)6(x5)4
    Use the Power Property. x12·x20x12·x20
    Add the exponents. x32x32

    Try It 10.43

    Simplify: (x4)3(x7)4.(x4)3(x7)4.

    Try It 10.44

    Simplify: (y9)2(y8)3.(y9)2(y8)3.

    Example 10.23

    Simplify: (7x3y4)2.(7x3y4)2.

    Answer

    (7x3y4)2(7x3y4)2
    Take each factor to the second power. (−7)2(x3)2(y4)2(−7)2(x3)2(y4)2
    Use the Power Property. 49x6y849x6y8

    Try It 10.45

    Simplify: (8x4y7)3.(8x4y7)3.

    Try It 10.46

    Simplify: (3a5b6)4.(3a5b6)4.

    Example 10.24

    Simplify: (6n)2(4n3).(6n)2(4n3).

    Answer

    (6n)2(4n3)(6n)2(4n3)
    Raise 6n6n to the second power. 62n2·4n362n2·4n3
    Simplify. 36n2·4n336n2·4n3
    Use the Commutative Property. 36·4·n2·n336·4·n2·n3
    Multiply the constants and add the exponents. 144n5144n5

    Notice that in the first monomial, the exponent was outside the parentheses and it applied to both factors inside. In the second monomial, the exponent was inside the parentheses and so it only applied to the n.

    Try It 10.47

    Simplify: (7n)2(2n12).(7n)2(2n12).

    Try It 10.48

    Simplify: (4m)2(3m3).(4m)2(3m3).

    Example 10.25

    Simplify: (3p2q)4(2pq2)3.(3p2q)4(2pq2)3.

    Answer

    (3p2q)4(2pq2)3(3p2q)4(2pq2)3
    Use the Power of a Product Property. 34(p2)4q4·23p3(q2)334(p2)4q4·23p3(q2)3
    Use the Power Property. 81p8q4·8p3q681p8q4·8p3q6
    Use the Commutative Property. 81·8·p8·p3·q4·q681·8·p8·p3·q4·q6
    Multiply the constants and add the exponents for
    each variable.
    648p11q10648p11q10

    Try It 10.49

    Simplify: (u3v2)5(4uv4)3.(u3v2)5(4uv4)3.

    Try It 10.50

    Simplify: (5x2y3)2(3xy4)3.(5x2y3)2(3xy4)3.

    Multiply Monomials

    Since a monomial is an algebraic expression, we can use the properties for simplifying expressions with exponents to multiply the monomials.

    Example 10.26

    Multiply: (4x2)(5x3).(4x2)(5x3).

    Answer

    (4x2)(5x3)(4x2)(5x3)
    Use the Commutative Property to rearrange the factors. 4·(−5)·x2·x34·(−5)·x2·x3
    Multiply. 20x520x5

    Try It 10.51

    Multiply: (7x7)(8x4).(7x7)(8x4).

    Try It 10.52

    Multiply: (9y4)(6y5).(9y4)(6y5).

    Example 10.27

    Multiply: (34c3d)(12cd2).(34c3d)(12cd2).

    Answer

    (34c3d)(12cd2)(34c3d)(12cd2)
    Use the Commutative Property to rearrange
    the factors.
    34·12·c3·c·d·d234·12·c3·c·d·d2
    Multiply. 9c4d39c4d3

    Try It 10.53

    Multiply: (45m4n3)(15mn3).(45m4n3)(15mn3).

    Try It 10.54

    Multiply: (23p5q)(18p6q7).(23p5q)(18p6q7).

    Media

    ACCESS ADDITIONAL ONLINE RESOURCES

    Section 10.2 Exercises

    Practice Makes Perfect

    Simplify Expressions with Exponents

    In the following exercises, simplify each expression with exponents.

    55.

    4 5 4 5

    56.

    10 3 10 3

    57.

    ( 1 2 ) 2 ( 1 2 ) 2

    58.

    ( 3 5 ) 2 ( 3 5 ) 2

    59.

    ( 0.2 ) 3 ( 0.2 ) 3

    60.

    ( 0.4 ) 3 ( 0.4 ) 3

    61.

    ( −5 ) 4 ( −5 ) 4

    62.

    ( −3 ) 5 ( −3 ) 5

    63.

    −5 4 −5 4

    64.

    −3 5 −3 5

    65.

    −10 4 −10 4

    66.

    −2 6 −2 6

    67.

    ( 2 3 ) 3 ( 2 3 ) 3

    68.

    ( 1 4 ) 4 ( 1 4 ) 4

    69.

    0.5 2 0.5 2

    70.

    0.1 4 0.1 4

    Simplify Expressions Using the Product Property of Exponents

    In the following exercises, simplify each expression using the Product Property of Exponents.

    71.

    x 3 · x 6 x 3 · x 6

    72.

    m 4 · m 2 m 4 · m 2

    73.

    a · a 4 a · a 4

    74.

    y 12 · y y 12 · y

    75.

    3 5 · 3 9 3 5 · 3 9

    76.

    5 10 · 5 6 5 10 · 5 6

    77.

    z · z 2 · z 3 z · z 2 · z 3

    78.

    a · a 3 · a 5 a · a 3 · a 5

    79.

    x a · x 2 x a · x 2

    80.

    y p · y 3 y p · y 3

    81.

    y a · y b y a · y b

    82.

    x p · x q x p · x q

    Simplify Expressions Using the Power Property of Exponents

    In the following exercises, simplify each expression using the Power Property of Exponents.

    83.

    ( u 4 ) 2 ( u 4 ) 2

    84.

    ( x 2 ) 7 ( x 2 ) 7

    85.

    ( y 5 ) 4 ( y 5 ) 4

    86.

    ( a 3 ) 2 ( a 3 ) 2

    87.

    ( 10 2 ) 6 ( 10 2 ) 6

    88.

    ( 2 8 ) 3 ( 2 8 ) 3

    89.

    ( x 15 ) 6 ( x 15 ) 6

    90.

    ( y 12 ) 8 ( y 12 ) 8

    91.

    ( x 2 ) y ( x 2 ) y

    92.

    ( y 3 ) x ( y 3 ) x

    93.

    ( 5 x ) y ( 5 x ) y

    94.

    ( 7 a ) b ( 7 a ) b

    Simplify Expressions Using the Product to a Power Property

    In the following exercises, simplify each expression using the Product to a Power Property.

    95.

    ( 5 a ) 2 ( 5 a ) 2

    96.

    ( 7 x ) 2 ( 7 x ) 2

    97.

    ( 6 m ) 3 ( 6 m ) 3

    98.

    ( 9 n ) 3 ( 9 n ) 3

    99.

    ( 4 r s ) 2 ( 4 r s ) 2

    100.

    ( 5 a b ) 3 ( 5 a b ) 3

    101.

    ( 4 x y z ) 4 ( 4 x y z ) 4

    102.

    ( 5 a b c ) 3 ( 5 a b c ) 3

    Simplify Expressions by Applying Several Properties

    In the following exercises, simplify each expression.

    103.

    ( x 2 ) 4 · ( x 3 ) 2 ( x 2 ) 4 · ( x 3 ) 2

    104.

    ( y 4 ) 3 · ( y 5 ) 2 ( y 4 ) 3 · ( y 5 ) 2

    105.

    ( a 2 ) 6 · ( a 3 ) 8 ( a 2 ) 6 · ( a 3 ) 8

    106.

    ( b 7 ) 5 · ( b 2 ) 6 ( b 7 ) 5 · ( b 2 ) 6

    107.

    ( 3 x ) 2 ( 5 x ) ( 3 x ) 2 ( 5 x )

    108.

    ( 2 y ) 3 ( 6 y ) ( 2 y ) 3 ( 6 y )

    109.

    ( 5 a ) 2 ( 2 a ) 3 ( 5 a ) 2 ( 2 a ) 3

    110.

    ( 4 b ) 2 ( 3 b ) 3 ( 4 b ) 2 ( 3 b ) 3

    111.

    ( 2 m 6 ) 3 ( 2 m 6 ) 3

    112.

    ( 3 y 2 ) 4 ( 3 y 2 ) 4

    113.

    ( 10 x 2 y ) 3 ( 10 x 2 y ) 3

    114.

    ( 2 m n 4 ) 5 ( 2 m n 4 ) 5

    115.

    ( −2 a 3 b 2 ) 4 ( −2 a 3 b 2 ) 4

    116.

    ( −10 u 2 v 4 ) 3 ( −10 u 2 v 4 ) 3

    117.

    ( 2 3 x 2 y ) 3 ( 2 3 x 2 y ) 3

    118.

    ( 7 9 p q 4 ) 2 ( 7 9 p q 4 ) 2

    119.

    ( 8 a 3 ) 2 ( 2 a ) 4 ( 8 a 3 ) 2 ( 2 a ) 4

    120.

    ( 5 r 2 ) 3 ( 3 r ) 2 ( 5 r 2 ) 3 ( 3 r ) 2

    121.

    ( 10 p 4 ) 3 ( 5 p 6 ) 2 ( 10 p 4 ) 3 ( 5 p 6 ) 2

    122.

    ( 4 x 3 ) 3 ( 2 x 5 ) 4 ( 4 x 3 ) 3 ( 2 x 5 ) 4

    123.

    ( 1 2 x 2 y 3 ) 4 ( 4 x 5 y 3 ) 2 ( 1 2 x 2 y 3 ) 4 ( 4 x 5 y 3 ) 2

    124.

    ( 1 3 m 3 n 2 ) 4 ( 9 m 8 n 3 ) 2 ( 1 3 m 3 n 2 ) 4 ( 9 m 8 n 3 ) 2

    125.

    ( 3 m 2 n ) 2 ( 2 m n 5 ) 4 ( 3 m 2 n ) 2 ( 2 m n 5 ) 4

    126.

    ( 2 p q 4 ) 3 ( 5 p 6 q ) 2 ( 2 p q 4 ) 3 ( 5 p 6 q ) 2

    Multiply Monomials

    In the following exercises, multiply the following monomials.

    127.

    ( 12 x 2 ) ( −5 x 4 ) ( 12 x 2 ) ( −5 x 4 )

    128.

    ( −10 y 3 ) ( 7 y 2 ) ( −10 y 3 ) ( 7 y 2 )

    129.

    ( −8 u 6 ) ( −9 u ) ( −8 u 6 ) ( −9 u )

    130.

    ( −6 c 4 ) ( −12 c ) ( −6 c 4 ) ( −12 c )

    131.

    ( 1 5 r 8 ) ( 20 r 3 ) ( 1 5 r 8 ) ( 20 r 3 )

    132.

    ( 1 4 a 5 ) ( 36 a 2 ) ( 1 4 a 5 ) ( 36 a 2 )

    133.

    ( 4 a 3 b ) ( 9 a 2 b 6 ) ( 4 a 3 b ) ( 9 a 2 b 6 )

    134.

    ( 6 m 4 n 3 ) ( 7 m n 5 ) ( 6 m 4 n 3 ) ( 7 m n 5 )

    135.

    ( 4 7 x y 2 ) ( 14 x y 3 ) ( 4 7 x y 2 ) ( 14 x y 3 )

    136.

    ( 5 8 u 3 v ) ( 24 u 5 v ) ( 5 8 u 3 v ) ( 24 u 5 v )

    137.

    ( 2 3 x 2 y ) ( 3 4 x y 2 ) ( 2 3 x 2 y ) ( 3 4 x y 2 )

    138.

    ( 3 5 m 3 n 2 ) ( 5 9 m 2 n 3 ) ( 3 5 m 3 n 2 ) ( 5 9 m 2 n 3 )

    Everyday Math

    139.

    Email Janet emails a joke to six of her friends and tells them to forward it to six of their friends, who forward it to six of their friends, and so on. The number of people who receive the email on the second round is 62,62, on the third round is 63,63, as shown in the table. How many people will receive the email on the eighth round? Simplify the expression to show the number of people who receive the email.

    Round Number of people
    11 66
    22 6262
    33 6363
    88 ??
    140.

    Salary Raul’s boss gives him a 5%5% raise every year on his birthday. This means that each year, Raul’s salary is 1.051.05 times his last year’s salary. If his original salary was $40,000$40,000, his salary after 11 year was $40,000(1.05),$40,000(1.05), after 22 years was $40,000(1.05)2,$40,000(1.05)2, after 33 years was $40,000(1.05)3,$40,000(1.05)3, as shown in the table below. What will Raul’s salary be after 1010 years? Simplify the expression, to show Raul’s salary in dollars.

    Year Salary
    11 $40,000(1.05)$40,000(1.05)
    22 $40,000(1.05)2$40,000(1.05)2
    33 $40,000(1.05)3$40,000(1.05)3
    1010 ??

    Writing Exercises

    141.

    Use the Product Property for Exponents to explain why x·x=x2.x·x=x2.

    142.

    Explain why −53=(−5)3−53=(−5)3 but −54(−5)4.−54(−5)4.

    143.

    Jorge thinks (12)2(12)2 is 1.1. What is wrong with his reasoning?

    144.

    Explain why x3·x5x3·x5 is x8,x8, and not x15.x15.

    Self Check

    After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

    .

    After reviewing this checklist, what will you do to become confident for all objectives?


    This page titled 10.3: Use Multiplication Properties of Exponents is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax.

    • Was this article helpful?