Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
[ "article:topic", "license:ccbysa", "showtoc:no", "authorname:lippmanrasmussen" ]
Mathematics LibreTexts

7.3E: Double Angle Identities (Exercises)

  • Page ID
    13936
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Section 7.3 Exercises

    1. If \(\sin \left(x\right)=\frac{1}{8}\) and x is in quadrant I, then find exact values for (without solving for x):

    a. \(\sin \left(2x\right)\) b. \(\cos \left(2x\right)\) c. \(\tan \left(2x\right)\)

    2. If \(\cos \left(x\right)=\frac{2}{3}\) and x is in quadrant I, then find exact values for (without solving for x):

    a. \(\sin \left(2x\right)\) b. \(\cos \left(2x\right)\) c. \(\tan \left(2x\right)\)

    Simplify each expression. \[3. \cos ^{2} \left(28{}^\circ \right)-\sin ^{2} (28{}^\circ ) 4. 2\cos ^{2} \left(37{}^\circ \right)-1\] \[5. 1-2\sin ^{2} (17{}^\circ ) 6. \cos ^{2} \left(37{}^\circ \right)-\sin ^{2} (37{}^\circ )\] \[7. \cos ^{2} \left(9x\right)-\sin ^{2} (9x) 8. \cos ^{2} \left(6x\right)-\sin ^{2} (6x)\] \[9. 4\sin \left(8x\right){\rm cos}(8x) 10. 6\sin \left(5x\right){\rm cos}(5x)\]

    Solve for all solutions on the interval \([0,\; 2\pi )\). \[11. 6\sin \left(2t\right)+9\sin \left(t\right)=0 12. 2\sin \left(2t\right)+3\cos \left(t\right)=0\] \[13. 9\cos \left(2\theta \right)=9\cos ^{2} \left(\theta \right)-4 14. 8\cos \left(2\alpha \right)=8\cos ^{2} \left(\alpha \right)-1\] \[15. \sin \left(2t\right)=\cos \left(t\right) 16. \cos \left(2t\right)=\sin \left(t\right)\] \[17. \cos \left(6x\right)-\cos \left(3x\right)=0 18. \sin \left(4x\right)-\sin \left(2x\right)=0\]

    Use a double angle, half angle, or power reduction formula to rewrite without exponents. \[19. \cos ^{2} (5x)~ 20. \cos ^{2} (6x)\] \[21. \sin ^{4} (8x) 22. \sin ^{4} \left(3x\right)\] \[23. \cos ^{2} x\sin ^{4} x 24. \cos ^{4} x\sin ^{2} x\]

    25. If \(\csc \left(x\right)=7\) and \(90{}^\circ <x<180{}^\circ\), then find exact values for (without solving for x):

    1. \(\sin \left(\frac{x}{2} \right)\) b. \(\cos \left(\frac{x}{2} \right)\) c. \(\tan \left(\frac{x}{2} \right)\)

    26. If \(\sec \left(x\right)=4\) and \(270{}^\circ <x<360{}^\circ\), then find exact values for (without solving for x):

    1. \(\sin \left(\frac{x}{2} \right)\) b. \(\cos \left(\frac{x}{2} \right)\) c. \(\tan \left(\frac{x}{2} \right)\)

    Prove the identity. \[27. \left(\sin t-\cos t\right)^{2} =1-\sin \left(2t\right)\] \[28. \left(\sin ^{2} x-1\right)^{2} =\cos \left(2x\right)+\sin ^{4} x\] \[29. \sin \left(2x\right)=\frac{2\tan \left(x\right)}{1+\tan ^{2} \left(x\right)}\] \[30. \tan \left(2x\right)=\frac{2\sin \left(x\right)\cos \left(x\right)}{2\cos ^{2} \left(x\right)-1}\] \[31. \cot \left(x\right)-\tan \left(x\right)=2\cot \left(2x\right)\] \[32. \frac{\sin \left(2\theta \right)}{1+\cos \left(2\theta \right)} =\tan \left(\theta \right)\] \[33. \cos \left(2\alpha \right)=\frac{1-\tan ^{2} \left(\alpha \right)}{1+\tan ^{2} \left(\alpha \right)}\] \[34. \frac{1+\cos \left(2t\right)}{\sin \left(2t\right)-\cos \left(t\right)} =\frac{2\cos \left(t\right)}{2\sin \left(t\right)-1}\] \[35. \sin \left(3x\right)=3\sin \left(x\right)\cos ^{2} \left(x\right)-\sin ^{3} (x)\] \[36. \cos \left(3x\right)=\cos ^{3} (x)-3\sin ^{2} (x)\cos \left(x\right)\]

    Section 7.4 Modeling Changing Amplitude and Midline 497