Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

7.3E: Double Angle Identities (Exercises)

  • Page ID
    13936
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Section 7.3 Exercises

    1. If \(\sin \left(x\right)=\frac{1}{8}\) and \(x\) is in quadrant I, then find exact values for (without solving for \(x\)):

    a. \(\sin \left(2x\right)\)
    b. \(\cos \left(2x\right)\)
    c. \(\tan \left(2x\right)\)

    2. If \(\cos \left(x\right)=\frac{2}{3}\) and \(x\) is in quadrant I, then find exact values for (without solving for \(x\)):

    a. \(\sin \left(2x\right)\)
    b. \(\cos \left(2x\right)\)
    c. \(\tan \left(2x\right)\)

    Simplify each expression.

    3. \(\cos ^{2} \left(28{}^\circ \right)-\sin ^{2} (28{}^\circ )\)

    4. \(2\cos ^{2} \left(37{}^\circ \right)-1\)

    5. \(1-2\sin ^{2} (17{}^\circ )\)

    6. \(\cos ^{2} \left(37{}^\circ \right)-\sin ^{2} (37{}^\circ )\)

    7. \(\cos ^{2} \left(9x\right)-\sin ^{2} (9x)\)

    8. \(\cos ^{2} \left(6x\right)-\sin ^{2} (6x)\)

    9. \(4\sin \left(8x\right){\rm cos}(8x)\)

    10. \(6\sin \left(5x\right){\rm cos}(5x)\)

    Solve for all solutions on the interval \([0, 2\pi )\).

    11. \(6\sin \left(2t\right)+9\sin \left(t\right)=0\)

    12. \(2\sin \left(2t\right)+3\cos \left(t\right)=0\)

    13. \(9\cos \left(2\theta \right)=9\cos ^{2} \left(\theta \right)-4\)

    14. \(8\cos \left(2\alpha \right)=8\cos ^{2} \left(\alpha \right)-1\)

    15. \(\sin \left(2t\right)=\cos \left(t\right)\)

    16. \(\cos \left(2t\right)=\sin \left(t\right)\)

    17. \(\cos \left(6x\right)-\cos \left(3x\right)=0\)

    18. \(\sin \left(4x\right)-\sin \left(2x\right)=0\)

    Use a double angle, half angle, or power reduction formula to rewrite without exponents.

    19. \(\cos ^{2} (5x)\)

    20. \(\cos ^{2} (6x)\)

    21. \(\sin ^{4} (8x)\)

    22. \(\sin ^{4} \left(3x\right)\)

    23. \(\cos ^{2} x\sin ^{4} x\)

    24. \(\cos ^{4} x\sin ^{2} x\)

    25. If \(\csc \left(x\right)=7\) and \(90{}^\circ <x<180{}^\circ\), then find exact values for (without solving for \(x\)):

    a. \(\sin \left(\frac{x}{2} \right)\)
    b. \(\cos \left(\frac{x}{2} \right)\)
    c. \(\tan \left(\frac{x}{2} \right)\)

    26. If \(\sec \left(x\right)=4\) and \(270{}^\circ <x<360{}^\circ\), then find exact values for (without solving for \(x\)):

    a. \(\sin \left(\frac{x}{2} \right)\)
    b. \(\cos \left(\frac{x}{2} \right)\)
    c. \(\tan \left(\frac{x}{2} \right)\)

    Prove the identity.

    27. \(\left(\sin t-\cos t\right)^{2} =1-\sin \left(2t\right)\)

    28. \(\left(\sin ^{2} x-1\right)^{2} =\cos \left(2x\right)+\sin ^{4} x\)

    29. \(\sin \left(2x\right)=\frac{2\tan \left(x\right)}{1+\tan ^{2} \left(x\right)}\)

    30. \(\tan \left(2x\right)=\frac{2\sin \left(x\right)\cos \left(x\right)}{2\cos ^{2} \left(x\right)-1}\)

    31. \(\cot \left(x\right)-\tan \left(x\right)=2\cot \left(2x\right)\)

    32. \(\frac{\sin \left(2\theta \right)}{1+\cos \left(2\theta \right)} =\tan \left(\theta \right)\)

    33. \(\cos \left(2\alpha \right)=\frac{1-\tan ^{2} \left(\alpha \right)}{1+\tan ^{2} \left(\alpha \right)}\)

    34. \(\frac{1+\cos \left(2t\right)}{\sin \left(2t\right)-\cos \left(t\right)} =\frac{2\cos \left(t\right)}{2\sin \left(t\right)-1}\)

    35. \(\sin \left(3x\right)=3\sin \left(x\right)\cos ^{2} \left(x\right)-\sin ^{3} (x)\)

    36. \(\cos \left(3x\right)=\cos ^{3} (x)-3\sin ^{2} (x)\cos \left(x\right)\)

    Answer

    1. a. \(\dfrac{3\sqrt{7}}{32}\)
        b. \(\dfrac{31}{32}\)
        c. \(\dfrac{3\sqrt{7}}{31}\)

    3. \(\cos(56^{\circ})\)

    5. \(\cos(34^{\circ})\)

    7. \(\cos(18x)\)

    9. \(2\sin(16x)\)

    11. 0, \(\pi\), 2.4189,3.8643

    13. 0.7297, 2.4119, 3.8713, 5.5535

    15. \(\dfrac{\pi}{6}\), \(\dfrac{\pi}{2}\), \(\dfrac{5\pi}{6}\), \(\dfrac{3\pi}{2}\)

    17. a. \(\dfrac{2\pi}{9}\), \(\dfrac{4\pi}{9}\), \(\dfrac{8\pi}{9}\), \(\dfrac{10\pi}{9}\), \(\dfrac{14\pi}{9}\), \(\dfrac{16\pi}{9}\), 0, \(\dfrac{2\pi}{3}\), \(\dfrac{4\pi}{3}\)

    19. \(\dfrac{1 + \cos(10x)}{2}\)

    21. \(\dfrac{3}{8} - \dfrac{1}{2} \cos(16x) + \dfrac{1}{8} \cos(32x)\)

    23. \(\dfrac{1}{16} - \dfrac{1}{16} \cos(2x) + \dfrac{1}{16} \cos(4x) - \dfrac{1}{16} \cos(2x) \cos(4x)\)

    25. a. \(\sqrt{\dfrac{1}{2}+\dfrac{2 + \sqrt{7}}{7}}\)
          b. \(\sqrt{\dfrac{1}{2}-\dfrac{2 + \sqrt{7}}{7}}\)
          c. \(\dfrac{1}{7 - 4\sqrt{3}}\)