Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

1.5.1: Transformation of Functions

( \newcommand{\kernel}{\mathrm{null}\,}\)

Section 1.5 Exercises

Describe how each function is a transformation of the original function f(x)

1. f(x49)

2. f(x+43)

3. f(x+3)

4. f(x4)

5. f(x)+5

6. f(x)+8

7. f(x)2

8. f(x)7

9. f(x2)+3

10. f(x+4)1

11. Write a formula for f(x)=x shifted up 1 unit and left 2 units.

12. Write a formula for f(x)=|x| shifted down 3 units and right 1 unit.

13. Write a formula for f(x)=1x shifted down 4 units and right 3 units.

14. Write a formula for f(x)=1x2 shifted up 2 units and left 4 units.

15. Tables of values for f(x), g(x), and h(x) are given below. Write g(x) and h(x) as transformations of f(x).

屏幕快照 2019-06-14 下午3.07.52.png

16. Tables of values for f(x), g(x), and h(x) are given below. Write g(x) and h(x) as transformations of f(x).

屏幕快照 2019-06-14 下午3.08.46.png

The graph of f(x)=2x is shown. Sketch a graph of each transformation of f(x).

17. g(x)=2x+1屏幕快照 2019-06-14 下午3.10.53.png

18. h(x)=2x3

19. w(x)=2x1

20. q(x)=2x+3

Sketch a graph of each function as a transformation of a toolkit function.

21. f(t)=(t+1)23

22. h(x)=|x1|+4

23. k(x=(x2)31

24. m(t)=3+t+2

Write an equation for each function graphed below.

25. 屏幕快照 2019-06-14 下午3.13.43.png

26. 屏幕快照 2019-06-14 下午3.14.17.png

27. 屏幕快照 2019-06-14 下午3.14.58.png

28.屏幕快照 2019-06-14 下午3.15.37.png

Find a formula for each of the transformations of the square root whose graphs are given below.

29. 屏幕快照 2019-06-14 下午3.16.39.png

30. 屏幕快照 2019-06-14 下午3.17.08.png

The graph of f(x)=2x is shown. Sketch a graph of each transformation of f(x)

屏幕快照 2019-06-14 下午3.18.02.png

31. g(x)=2x+1

32. h(x)=2x

33. Starting with the graph of f(x)=6x write the equation of the graph that results from

a. reflecting f(x) about the x-axis and the y-axis

b. reflecting f(x) about the x-axis, shifting left 2 units, and down 3 units

34. Starting with the graph of f(x)=4x write the equation of the graph that results from

a. reflecting f(x) about the x-axis

b. reflecting f(x) about the y-axis, shifting right 4 units, and up 2 units

Write an equation for each function graphed below.

35. 屏幕快照 2019-06-14 下午3.21.50.png 36. 屏幕快照 2019-06-14 下午3.22.23.png

37. 屏幕快照 2019-06-14 下午3.23.15.png 38.屏幕快照 2019-06-14 下午3.23.48.png

39. For each equation below, determine if the function is Odd, Even, or Neither.

a. f(x)=3x4

b. g(x)=x

c. h(x)=1x+3x

40. For each equation below, determine if the function is Odd, Even, or Neither.

a. f(x)=(x2)2

b. g(x)=2x4

c. h(x)=2xx3

Describe how each function is a transformation of the original function f(x).

41. f(x)

42. f(x)

43. 4f(x)

44. 6f(x)

45. f(5x)

46. f(2x)

47. f(13x)

48. f(15x)

49. 3f(x)

50. f(3x)

Write a formula for the function that results when the given toolkit function is transformed as described.

51. f(x)=|x| reflected over the y axis and horizontally compressed by a factor of 14.

52. f(x)=x reflected over the x axis and horizontally stretched by a factor of 2.

53. f(x)=1x2 vertically compressed by a factor of 13, then shifted to the left 2 units and down 3 units.

54. f(x)=1x vertically stretched by a factor of 8, then shifted to the right 4 units and up 2 units.

55. f(x)=x2 horizontally compressed by a factor of 12, then shifted to the right 5 units and up 1 unit.

56. f(x)=x2 horizontally stretched by a factor of 3, then shifted to the left 4 units and down 3 units.

Describe how each formula is a transformation of a toolkit function. Then sketch a graph of the transformation.

57. f(x)=4(x+1)25

58. g(x)=5(x+3)22

59. h(x)=2|x4|+3

60. k(x)=3x1

61. m(x)=12x3

62. n(x)=13|x2|

63. p(x)=(13x)23

64. q(x)=(14x)3+1

65. a(x)=x+4

66. b(x)=3x6

Determine the interval(s) on which the function is increasing and decreasing.

67. f(x)=4(x+1)25

68. g(x)=5(x+3)22

69. a(x)=x+4

70. k(x)=3x1

Determine the interval(s) on which the function is concave up and concave down.

71. m(x)=2(x+3)3+1

72. b(x)=3x6

73. p(x)=(13x)23

74. k(x)=3x1

The function f(x) is graphed here. Write an equation for each graph below as a transformation of f(x).

75.屏幕快照 2019-06-14 下午3.38.50.png76.屏幕快照 2019-06-14 下午3.39.25.png77.屏幕快照 2019-06-14 下午3.40.01.png

78.屏幕快照 2019-06-14 下午3.40.25.png79. 屏幕快照 2019-06-14 下午3.41.11.png80. 屏幕快照 2019-06-14 下午3.41.43.png

81.屏幕快照 2019-06-14 下午3.42.36.png82.屏幕快照 2019-06-14 下午3.43.25.png 83. 屏幕快照 2019-06-14 下午3.43.59.png

84. 屏幕快照 2019-06-14 下午3.44.41.png85.屏幕快照 2019-06-14 下午3.45.12.png 86.屏幕快照 2019-06-14 下午3.45.47.png

Write an equation for each transformed toolkit function graphed below.

87. 屏幕快照 2019-06-14 下午3.47.01.png88.屏幕快照 2019-06-14 下午3.47.33.png 89. 屏幕快照 2019-06-14 下午3.47.59.png

90. 屏幕快照 2019-06-14 下午3.48.35.png91. 屏幕快照 2019-06-14 下午3.49.16.png92.屏幕快照 2019-06-14 下午3.49.47.png

93. 屏幕快照 2019-06-14 下午3.53.14.png94.屏幕快照 2019-06-14 下午3.53.57.png 95. 屏幕快照 2019-06-14 下午3.54.44.png

96. 屏幕快照 2019-06-14 下午3.55.27.png97. 屏幕快照 2019-06-14 下午3.57.57.png98.屏幕快照 2019-06-14 下午3.59.00.png

Write a formula for the piecewise function graphed below.

99. 屏幕快照 2019-06-14 下午3.59.40.png100. 屏幕快照 2019-06-14 下午4.00.25.png

101. 屏幕快照 2019-06-14 下午4.01.04.png102. 屏幕快照 2019-06-14 下午4.01.26.png

103. Suppose you have a function y=f(x) such that the domain of f(x) is 1x6 and the range of f(x) is (-3 \le y \le 5\). [UW]

a. What is the domain of f(2(x3))?

b. What is the range of f(2(x3)) ?

c. What is the domain of 2f(x)3 ?

d. What is the range of 2f(x)3 ?

e. Can you find constants B and C so that the domain of f(B(xC)) is 8x9?

f. Can you find constants A and D so that the range of Af(x)+D is 0 0y1?

Answer

1. Horizontal shift right 49 units

3. Horizontal shift left 3 units

5. Vertical shift up 5 units

7. Vertical shift down 2 units

9. Horizontal shift right 2 units, Vertical shift up 3 units

11. f(x+2)+1=x+2+1

13. f(x3)4=1x34

15. g(x)=f(x1), h(x)=f(x)+1

17. Screen Shot 2019-10-01 at 8.56.34 AM.png19. Screen Shot 2019-10-01 at 8.56.55 AM.png

21. Screen Shot 2019-10-01 at 8.57.26 AM.png23. Screen Shot 2019-10-01 at 8.57.54 AM.png

25. y=|x3|2

27. y=x+31

29. y=x

31. Screen Shot 2019-10-01 at 8.58.26 AM.png

33. a. f(x)=6x
b. f(x+2)3=6x+23

35. y=(x+1)2+2

37. y=x+1

39. a. Even
b. Neither
c. Odd

41. Reflect f(x) about the x-axis

43. Vertically stretch y values by 4

45. Horizontally compress x values by 1/5

47. Horizontally stretch x values by 3

49. Reflect f(x) about the y-axis and vertically stretch y values by 3

51. f(4x)=|4x|

53. 13f(x+2)3=13(x+2)23

55. f(2(x5))+1=(2(x5))2+1

57. Horizontal shift left 1 unit, vertical stretch y values by 4, vertical shift down 5 units

Screen Shot 2019-10-01 at 9.00.14 AM.png becomes Screen Shot 2019-10-01 at 9.00.39 AM.png

59. Horizontal shift right 4 units, vertical stretch y values by 2, reflect over x axis, vertically shift up 3 units.

Screen Shot 2019-10-01 at 9.01.08 AM.png becomes Screen Shot 2019-10-01 at 9.01.37 AM.png

61. Vertically compress y values by 1/2

Screen Shot 2019-10-01 at 9.06.17 AM.png becomes Screen Shot 2019-10-01 at 9.06.43 AM.png

63. Horizontally stretch x values by 3, vertical shift down 3 units

Screen Shot 2019-10-01 at 9.07.21 AM.png becomes Screen Shot 2019-10-01 at 9.07.43 AM.png

65. Reflected over the y axis, horizontally shift right 4 units a(x)=(x4)

Screen Shot 2019-10-01 at 9.08.13 AM.png becomes Screen Shot 2019-10-01 at 9.08.42 AM.png

67. This function is increasing on (1,) and decreasing on (,1)

69. This function is decreasing on (,4)

71. This function is concave down on (3,) and concave up on (,3)

73. This function is concave up everywhere

75. f(x)

77. 3f(x)

79. 2f(x)

81. 2f(12x)

83. 2f(x)2

85. f(x+1)+3

87. y=2(x+2)2+3

89. y=(12(x1))3+2

91. y=2(x+2)+1

93. y=1(x2)2+3

95. y=2|x+1|+3

97. y=312(x2)+1

99. f(x)={(x+3)2+1ifx212|x2|+3ifx>2

101. f(x)={1ifx<22(x+1)2+4if2x13x2+1ifx>1

103a. Domain: 3.5x6
d. Range: 9y7


1.5.1: Transformation of Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?