7.2E: Addition and Subtraction Identities (Exercises)
- Page ID
- 13935
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Section 7.2 Exercises
Find an exact value for each of the following.
1. \(\sin \left(75{}^\circ \right)\)
2. \(\sin \left(195{}^\circ \right)\)
3. \({\rm cos}(165{}^\circ )\)
4. \({\rm cos}(345{}^\circ )\)
5. \(\cos \left(\dfrac{7\pi }{12} \right)\)
6. \(\cos \left(\dfrac{\pi }{12} \right)\)
7. \(\sin \left(\dfrac{5\pi }{12} \right)\)
8. \(\sin \left(\dfrac{11\pi }{12} \right)\)
Rewrite in terms of \(\sin \left(x\right)\) and \(\cos \left(x\right)\).
9. \(\sin \left(x+\dfrac{11\pi }{6} \right)\)
10. \(\sin \left(x-\dfrac{3\pi }{4} \right)\)
11. \(\cos \left(x-\dfrac{5\pi }{6} \right)\)
12. \(\cos \left(x+\dfrac{2\pi }{3} \right)\)
Simplify each expression.
13. \(\csc \left(\dfrac{\pi }{2} -\; t\right)\)
14. \(\sec \left(\dfrac{\pi }{2} -w\right)\)
15. \(\cot \left(\dfrac{\pi }{2} -x\right)\)
16. \(\tan \left(\dfrac{\pi }{2} -x\right)\)
Rewrite the product as a sum.
17. \(16\sin \left(16x\right)\sin \left(11x\right)\)
18. \(20\cos \left(36t\right)\cos \left(6t\right)\)
19. \(2\sin \left(5x\right)\cos \left(3x\right)\)
20. \(10\cos \left(5x\right)\sin \left(10x\right)\)
Rewrite the sum as a product.
21. \(\cos \left(6t\right)+\cos \left(4t\right)\)
22. \(\cos \left(6u\right)+\cos \left(4u\right)\)
23. \(\sin \left(3x\right)+\sin \left(7x\right)\)
24. \(\sin \left(h\right)+\sin \left(3h\right)\)
25. Given \(\sin \left(a\right)=\dfrac{2}{3}\) and \(\cos \left(b\right)=-\dfrac{1}{4}\), with \(a\) and \(b\) both in the interval \(\left[\dfrac{\pi }{2} ,\pi \right)\):
a. Find \(\sin \left(a+b\right)\)
b. Find \(\cos \left(a-b\right)\)
26. Given \(\sin \left(a\right)=\dfrac{4}{5}\) and \(\cos \left(b\right)=\dfrac{1}{3}\), with \(a\) and \(b\) both in the interval \(\left[0,\dfrac{\pi }{2} \right)\):
a. Find \(\sin \left(a-b\right)\)
b. Find \(\cos \left(a+b\right)\)
Solve each equation for all solutions.
27. \(\sin \left(3x\right)\cos \left(6x\right)-\cos \left(3x\right)\sin \left(6x\right)= -0.9\)
28. \(\sin \left(6x\right)\cos \left(11x\right)-\cos \left(6x\right)\sin \left(11x\right)= -0.1\)
29. \(\cos \left(2x\right)\cos \left(x\right)+\sin \left(2x\right)\sin \left(x\right)=1\)
30. \(\cos \left(5x\right)\cos \left(3x\right)-\sin \left(5x\right)\sin \left(3x\right)=\dfrac{\sqrt{3} }{2}\)
Solve each equation for all solutions.
31. \(\cos \left(5x\right)=-\cos \left(2x\right)\)
32. \(\sin \left(5x\right)=\sin \left(3x\right)\)
33. \(\cos \left(6\theta \right)-\cos \left(2\theta \right)=\sin \left(4\theta \right)\)
34. \(\cos \left(8\theta \right)-\cos \left(2\theta \right)=\sin \left(5\theta \right)\)
Rewrite as a single function of the form \(A\sin (Bx+C)\).
35. \(4\sin \left(x\right)-6\cos \left(x\right)\)
36. \(-\sin \left(x\right)-5\cos \left(x\right)\)
37. \(5\sin \left(3x\right)+2\cos \left(3x\right)\)
38. \(-3\sin \left(5x\right)+4\cos \left(5x\right)\)
Solve for the first two positive solutions.
39. \(-5\sin \left(x\right)+3\cos \left(x\right)=1\)
40. \(3\sin \left(x\right)+\cos \left(x\right)=2\)
41. \(3\sin \left(2x\right)-5\cos \left(2x\right)=3\)
42. \(-3\sin \left(4x\right)-2\cos \left(4x\right)=1\)
Simplify.
43. \(\dfrac{\sin \left(7t\right)+\sin \left(5t\right)}{\cos \left(7t\right)+\cos \left(5t\right)}\)
44. \(\dfrac{\sin \left(9t\right)-\sin \left(3t\right)}{\cos \left(9t\right)+\cos \left(3t\right)}\)
Prove the identity.
44. \(\tan \left(x+\dfrac{\pi }{4} \right)=\dfrac{\tan \left(x\right)+1}{1-\tan \left(x\right)}\)
45. \(\tan \left(\dfrac{\pi }{4} -t\right)=\dfrac{1-\tan \left(t\right)}{1+\tan \left(t\right)}\)
46. \(\cos \left(a+b\right)+\cos \left(a-b\right)=2\cos \left(a\right)\cos \left(b\right)\)
47. \(\dfrac{\cos \left(a+b\right)}{\cos \left(a-b\right)} =\dfrac{1-\tan \left(a\right)\tan \left(b\right)}{1+\tan \left(a\right)\tan \left(b\right)}\)
48. \(\dfrac{\tan \left(a+b\right)}{\tan \left(a-b\right)} =\dfrac{\sin \left(a\right)\cos \left(a\right)+\sin \left(b\right)\cos \left(b\right)}{\sin \left(a\right)\cos \left(a\right)-\sin \left(b\right)\cos \left(b\right)}\)
49. \(2\sin \left(a+b\right)\sin \left(a-b\right)=\cos \left(2b\right)-{\rm cos}(2a)\)
50. \(\dfrac{\sin \left(x\right)+\sin \left(y\right)}{\cos \left(x\right)+\cos \left(y\right)} =\tan \left(\dfrac{1}{2} \left(x+y\right)\right)\)
Prove the identity.
51. \(\dfrac{\cos \left(a+b\right)}{\cos \left(a\right)\cos \left(b\right)} =1-\tan \left(a\right)\tan \left(b\right)\)
52. \(\cos \left(x+y\right)\cos \left(x-y\right)=\cos ^{2} x-\sin ^{2} y\)
53. Use the sum and difference identities to establish the product-to-sum identity
\(\sin (\alpha )\sin (\beta )=\dfrac{1}{2} \left(\cos (\alpha -\beta )-\cos (\alpha +\beta )\right)\)
54. Use the sum and difference identities to establish the product-to-sum identity
\(\cos (\alpha )\cos (\beta )=\dfrac{1}{2} \left(\cos (\alpha +\beta )+\cos (\alpha -\beta )\right)\)
55. Use the product-to-sum identities to establish the sum-to-product identity
\(\cos \left(u\right)+\cos \left(v\right)=2\cos \left(\dfrac{u+v}{2} \right)\cos \left(\dfrac{u-v}{2} \right)\)
56. Use the product-to-sum identities to establish the sum-to-product identity
\(\cos \left(u\right)-\cos \left(v\right)=-2\sin \left(\dfrac{u+v}{2} \right)\sin \left(\dfrac{u-v}{2} \right)\)
- Answer
-
1. \(\dfrac{\sqrt{2} + \sqrt{6}}{4}\)
3. \(\dfrac{-\sqrt{2} - \sqrt{6}}{4}\)
5. \(\dfrac{\sqrt{2} - \sqrt{6}}{4}\)
7. \(\dfrac{\sqrt{2} + \sqrt{6}}{4}\)
9. \(\dfrac{\sqrt{3}}{2}\sin(x) - \dfrac{1}{2} \cos(x)\)
11. \(-\dfrac{\sqrt{3}}{2}\cos(x) + \dfrac{1}{2} \sin(x)\)
13. \(\sec(t)\)
15. \(\tan(x)\)
17. \(8(\cos(5x) - \cos(27x))\)
19. \(\sin(8x) + \sin (2x)\)
21. \(2 \cos(5t) \cos(t)\)
23. \(2 \sin(5x) \cos(2x)\)
25. a. \((\dfrac{2}{3})(-\dfrac{1}{4}) + (-\dfrac{\sqrt{5}}{3})(\dfrac{\sqrt{15}}{4}) = \dfrac{-2-5\sqrt{3}}{12}\)
b. \((-\dfrac{\sqrt{5}}{3})(-\dfrac{1}{4}) + (\dfrac{2}{3})(\dfrac{\sqrt{15}}{4}) = \dfrac{\sqrt{5} + 2\sqrt{15}}{12}\)27. \(0.373 + \dfrac{2\pi}{3} k\) and \(0.674 + \dfrac{2\pi}{3} k\), where \(k\) is an integer
29. \(2 \pi k\), where \(k\) is an integer
31. \(\dfrac{\pi}{7} + \dfrac{4\pi}{7} k\), \(\dfrac{3\pi}{7} + \dfrac{4\pi}{7} k\), \(\dfrac{\pi}{3} + \dfrac{4\pi}{3} k\), and \(\pi + \dfrac{4\pi}{3} k\), where \(k\) is an integer
33. \(\dfrac{7\pi}{12} + \pi k\), \(\dfrac{11\pi}{12} + \pi k\), and \(\dfrac{\pi}{4} k\), where \(k\) is an integer
35. \(2 \sqrt{13} \sin (x + 5.3004)\) or \(2\sqrt{13} \sin(x - 0.9828)\)
37. \(\sqrt{29} \sin(3x + 0.3805)\)
39. 0.3681, 3.8544
41. 0.7854, 1.8158
43. \(\tan(6t)\)