9: Sequences and the Binomial Theorem
( \newcommand{\kernel}{\mathrm{null}\,}\)
- 9.1: Sequences
- In this section, we introduce sequences which are an important class of functions whose domains are the set of natural numbers.
- 9.2: Summation Notation
- In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence.
- 9.3: Mathematical Induction
- Here we introduce a method of proof, Mathematical Induction, which allows us to prove many of the formulas we have merely motivated previously.
- 9.4: The Binomial Theorem
- Simply stated, the Binomial Theorem is a formula for the expansion of quantities for natural numbers.
Thumbnail: The sum of the areas of the rectangles is greater than the area between the curve f(x)=1/x and the x-axis for x≥1. Since the area bounded by the curve is infinite (as calculated by an improper integral), the sum of the areas of the rectangles is also infinite.