Skip to main content
Mathematics LibreTexts

2.6.1: Key Terms

  • Page ID
    116017
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Key Terms

    correlation coefficient
    a value, r,r, between –1 and 1 that indicates the degree of linear correlation of variables, or how closely a regression line fits a data set.
    decreasing linear function
    a function with a negative slope: If f(x)=mx+b,thenm<0. f(x)=mx+b,thenm<0.
    extrapolation
    predicting a value outside the domain and range of the data
    horizontal line
    a line defined by f(x)=b,f(x)=b, where bb is a real number. The slope of a horizontal line is 0.
    increasing linear function
    a function with a positive slope: If f(x)=mx+b,thenm>0.f(x)=mx+b,thenm>0.
    interpolation
    predicting a value inside the domain and range of the data
    least squares regression
    a statistical technique for fitting a line to data in a way that minimizes the differences between the line and data values
    linear function
    a function with a constant rate of change that is a polynomial of degree 1, and whose graph is a straight line
    model breakdown
    when a model no longer applies after a certain point
    parallel lines
    two or more lines with the same slope
    perpendicular lines
    two lines that intersect at right angles and have slopes that are negative reciprocals of each other
    point-slope form
    the equation for a line that represents a linear function of the form yy1=m(xx1)yy1=m(xx1)
    slope
    the ratio of the change in output values to the change in input values; a measure of the steepness of a line
    slope-intercept form
    the equation for a line that represents a linear function in the form f(x)=mx+bf(x)=mx+b
    vertical line
    a line defined by x=a,x=a, where aa is a real number. The slope of a vertical line is undefined.
    x-intercept
    the point on the graph of a linear function when the output value is 0; the point at which the graph crosses the horizontal axis
    y-intercept
    the value of a function when the input value is zero; also known as initial value

    2.6.1: Key Terms is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?