Skip to main content
Mathematics LibreTexts

4.10.2: Key Equations

  • Page ID
    116112
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Key Equations

    definition of the exponential function f(x)= b x , where b>0, b1 f(x)= b x , where b>0, b1
    definition of exponential growth f(x)=a b x ,where a>0, b>0, b1 f(x)=a b x ,where a>0, b>0, b1
    compound interest formula A(t)=P ( 1+ r n ) nt ,where A(t)is the account value at time t tis the number of years Pis the initial investment, often called the principal ris the annual percentage rate (APR), or nominal rate nis the number of compounding periods in one year A(t)=P ( 1+ r n ) nt ,where A(t)is the account value at time t tis the number of years Pis the initial investment, often called the principal ris the annual percentage rate (APR), or nominal rate nis the number of compounding periods in one year
    continuous growth formula A(t)=a e rt ,where A(t)=a e rt ,where
    t t is the number of unit time periods of growth
    a a is the starting amount (in the continuous compounding formula a is replaced with P, the principal)
    e e is the mathematical constant, e2.718282 e2.718282
    General Form for the Translation of the Parent Function f(x)= b x f(x)= b x f(x)=a b x+c +d f(x)=a b x+c +d
    Definition of the logarithmic function For x>0,b>0,b1, x>0,b>0,b1,
    y= log b ( x ) y= log b ( x ) if and only if b y =x. b y =x.
    Definition of the common logarithm For x>0, x>0, y=log( x ) y=log( x ) if and only if 10 y =x. 10 y =x.
    Definition of the natural logarithm For x>0, x>0, y=ln( x ) y=ln( x ) if and only if e y =x. e y =x.
    General Form for the Translation of the Parent Logarithmic Function f(x)= log b ( x ) f(x)= log b ( x ) f(x)=a log b ( x+c )+d f(x)=a log b ( x+c )+d
    The Product Rule for Logarithms log b (MN)= log b ( M )+ log b ( N ) log b (MN)= log b ( M )+ log b ( N )
    The Quotient Rule for Logarithms log b ( M N )= log b M log b N log b ( M N )= log b M log b N
    The Power Rule for Logarithms log b ( M n )=n log b M log b ( M n )=n log b M
    The Change-of-Base Formula log b M= log n M log n b n>0,n1,b1 log b M= log n M log n b n>0,n1,b1
    One-to-one property for exponential functions For any algebraic expressions S S and T T and any positive real number b, b, where
    b S = b T b S = b T if and only if S=T. S=T.
    Definition of a logarithm For any algebraic expression S and positive real numbers b b and c, c, where b1, b1,
    log b (S)=c log b (S)=c if and only if b c =S. b c =S.
    One-to-one property for logarithmic functions For any algebraic expressions S and T and any positive real number b, b, where b1, b1,
    log b S= log b T log b S= log b T if and only if S=T. S=T.
    Half-life formula If A= A 0 e kt , A= A 0 e kt , k<0, k<0, the half-life is t= ln(2) k . t= ln(2) k .
    Carbon-14 dating t= ln( A A 0 ) 0.000121 . t= ln( A A 0 ) 0.000121 .
    A 0 A 0 is the amount of carbon-14 when the plant or animal died
    A A is the amount of carbon-14 remaining today
    t t is the age of the fossil in years
    Doubling time formula If A= A 0 e kt , A= A 0 e kt , k>0, k>0, the doubling time is t= ln2 k t= ln2 k
    Newton’s Law of Cooling T(t)=A e kt + T s , T(t)=A e kt + T s , where T s T s is the ambient temperature, A=T(0) T s , A=T(0) T s , and k k is the continuous rate of cooling.

    4.10.2: Key Equations is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?