10.7.2: Key Equations
( \newcommand{\kernel}{\mathrm{null}\,}\)
Key Equations
Horizontal ellipse, center at origin | x2a2+y2b2=1,a>b |
Vertical ellipse, center at origin | x2b2+y2a2=1,a>b |
Horizontal ellipse, center (h,k) | (x−h)2a2+(y−k)2b2=1,a>b |
Vertical ellipse, center (h,k) | (x−h)2b2+(y−k)2a2=1,a>b |
Hyperbola, center at origin, transverse axis on x-axis | x2a2−y2b2=1 |
Hyperbola, center at origin, transverse axis on y-axis | y2a2−x2b2=1 |
Hyperbola, center at (h,k), transverse axis parallel to x-axis | (x−h)2a2−(y−k)2b2=1 |
Hyperbola, center at (h,k), transverse axis parallel to y-axis | (y−k)2a2−(x−h)2b2=1 |
Parabola, vertex at origin, axis of symmetry on x-axis | y2=4px |
Parabola, vertex at origin, axis of symmetry on y-axis | x2=4py |
Parabola, vertex at (h,k), axis of symmetry on x-axis | (y−k)2=4p(x−h) |
Parabola, vertex at (h,k), axis of symmetry on y-axis | (x−h)2=4p(y−k) |
General Form equation of a conic section | Ax2+Bxy+Cy2+Dx+Ey+F=0 |
Rotation of a conic section | x=x′cosθ−y′sinθy=x′sinθ+y′cosθ |
Angle of rotation | θ,wherecot(2θ)=A−CB |