Skip to main content
Mathematics LibreTexts

1: Social Network Data

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 1.1: Introduction - What's different about social network data?
      On one hand, there really isn't anything about social network data that is all that unusual. Social network analysts do use a specialized language for describing the structure and contents of the sets of observations that they use. But, network data can also be described and understood using the ideas and concepts of more familiar methods, like cross-sectional survey research.
    • 1.2: Nodes
      Network data are defined by actors and by relations (or "nodes" and "edges"). The nodes or actors part of network data would seem to be pretty straight-forward. Other empirical approaches in the social sciences also think in terms of cases or subjects or sample elements and the like. There is one difference with most network data, however, that makes a big difference in how such data are usually collected -- and the kinds of samples and populations that are studied.
    • 1.3: Relations
      The other half of the design of network data has to do with what ties or relations are to be measured for the selected nodes. There are two main issues to be discussed here. In many network studies, all of the ties of a given type among all of the selected nodes are studied -- that is, a census is conducted. But, sometimes different approaches are used (because they are less expensive, or because of a need to generalize) that sample ties.
    • 1.4: Scales of Measurement
      Like other kinds of data, the information we collect about ties between actors can be measured (i.e. we can assign scores to our observations) at different "levels of measurement." The different levels of measurement are important because they limit the kinds of questions that can be examined by the researcher. Scales of measurement are also important because different kinds of scales have different mathematical properties, and call for different algorithms in describing patterns.
    • 1.5: A note on Statistics and Social Network Data
      Social network analysis is more a branch of "mathematical" sociology than of "statistical or quantitative analysis," though social network analysts most certainly practice both approaches. The distinction between the two approaches is not clear-cut. Mathematical approaches to network analysis tend to treat the data as "deterministic." That is, they tend to regard the measured relationships and relationship strengths as accurately reflecting the "real" or "final" status of the network.

    This page titled 1: Social Network Data is shared under a not declared license and was authored, remixed, and/or curated by Robert Hanneman & Mark Riddle.

    • Was this article helpful?