Skip to main content
Mathematics LibreTexts

5.6: Rabbit's show

  • Page ID
    102264

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Period-n Rabbit Renormalization

    5.6.1.png
    Figure \(\PageIndex{1}\)

    You see below the J(-1) set with superattracting period-2 critical orbit. The map f-1o2 is renormalizable (see the right picture below) and z = 0 is its superattracting fixed point, therefore the biggest central red bulb is homeomorphic to J(0) (i.e. a circle).

    5.6.2.png
    Figure \(\PageIndex{2}\)

    Next pictures illustrate renormalization of the Douady's rabbit.

    5.6.3.png
    Figure \(\PageIndex{3}\)

    "Embedded" Rabbits

    5.6.4.png
    Figure \(\PageIndex{4}\)

    c4 = -1.3125... (in the center of the "secondary" (1/2, 1/2) M-bulb) is periodic point with period 4 . fc4o2 is renormalizable (see the picture to the left). The critical point has period 2 under iterations of fc4o2, therefore you see a small "embedded" homeomorphic copy of J(-1) in the center of the picture. J(-1) midgets appear in every bulb of "initial" J(-1) set.

    fc4o4 is renormalizable too (see below) and z = 0 is its superattracting fixed point, therefore the red bulb in the center of J(c4) is a homeomorphic copy of J(0).

    5.6.5.png
    Figure \(\PageIndex{5}\)
    5.6.6.png
    Figure \(\PageIndex{6}\)

    In a similar way one can obtain any (m/n) bifurcation. E.g. this complex (1/3, 1/2) J-set is constructed of the two "primary" (1/3) and (1/2) J-sets.
    At last the (1/2, 1/2, 1/2) Rabbit.

    5.6.7.png
    Figure \(\PageIndex{7}\)

     


    This page titled 5.6: Rabbit's show is shared under a Public Domain license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?