Skip to main content
Mathematics LibreTexts

2.3: Powers of Trig Functions

  • Page ID
    520
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    \[\begin{align} \int \sin^5 x \, dx &= \int \sin^4 x \, \sin x \, dx \\ &= \int (\sin^2 x)^2 \sin x \,dx \\ &= \int (1-\cos^2x)^2 \sin x \, dx \\ &\text{substitute } u = \cos x \text{ and } du = -\sin x\, dx \\ &= -\int (1 - u^2)^2 du \\ & = -\int [1 - 2u^2 + u^4] \; du \\ &= -u + \dfrac{2}{3} u^3 - \dfrac{1}{5} u^5 + C \\ &= -\cos x + \dfrac{2}{3} \cos^3 x - \dfrac{1}{5} \cos^5x + C \end{align}. \nonumber \]
    Evaluate \( \int \cos^7 x \, dx\).
    Evaluate \(\int \sin^4 x\, dx\).

    Solution

    We write

    \[\begin{align} \int \sin^4 x \; dx &= \int (\sin^2 x)^2 dx \\ &= \int \Big(\dfrac{1}{2} - \dfrac{1}{2} \cos(2x)\Big)^2 \; dx \\ &= \int \Big[ \dfrac{1}{4}-\dfrac{1}{2} \cos(2x) + \dfrac{1}{4} \cos^2(2x) \Big] dx \end{align} \nonumber \]

    For the second integral let \( u = 2x\) and \(dx = \dfrac{1}{2} du\).

    The integral becomes

    \[ \dfrac{1}{4} x - \dfrac{1}{4} \sin(2x) + \dfrac{1}{4}\int \Big[ \dfrac{1}{2}+\dfrac{1}{2} \cos(4x) \Big] dx \nonumber \]

    \[\text{Let } u = 4x, dx = \dfrac{1}{4} \; du \nonumber \]

    \[\dfrac{1}{4}x - \dfrac{1}{4}\sin(2x) +\dfrac{1}{8}x +\dfrac{1}{32}\sin(4x) +C. \nonumber \]

    We see that if the power is odd we can pull out one of the sin functions and convert the other to an expression involving the cos function only. Then use \( u = \cos x. \)

    If the power is even, we must use the trig identities

    \[ \sin^2x = \dfrac{1}{2} - \dfrac{1}{2} \cos (2x) \nonumber \]

    and

    \[ \cos^2 x = \dfrac{1}{2} + \dfrac{1}{2} \cos (2x). \nonumber \]

    This method will always work and is always long and tedious.

    \[\begin{align} \int u^2 (1-u^2) \; du &= \int u^2-u^4 \; du \\ &= \dfrac{1}{3}u^5 + C \\ &= \dfrac{1}{3} \sin^3 x -\dfrac{1}{5} \sin^5 x + C \end{align} \nonumber \]
    \[ \int \sin^5 x \cos^2 x \, dx \nonumber \]

    Powers of Tangents and Secants

    To integrate powers of tangents and secants we use the formula

    \[ \tan^2 x = \sec^2 x - 1. \nonumber \]

    \[\begin{align} \int u^2 \,du - \tan x + x &= \dfrac{1}{3} u^3 - \tan x + x + C \\ &= \dfrac{1}{3} \tan^3 x - \tan x + x + C \end{align}. \nonumber \]
    \[ \int \sec^5 x \tan^3 x \, dx. \nonumber \]

    Mixed Angles

    We have the following formulas:

    \[ \sin(m \theta) \sin(n \theta) = \dfrac{1}{2} \left[ \cos[(m - n) \theta] - \cos[(m + n) \theta] \right] \nonumber \]

    \[ \sin(m \theta) \cos(n \theta) = \dfrac{1}{2} \left[ \sin[(m - n) \theta] + \sin[(m + n) \theta] \right] \nonumber \]

    \[ \cos(m \theta) \cos(n \theta) = \dfrac{1}{2} \left[ \cos[(m - n) \theta] + \cos[(m + n) \theta] \right]. \nonumber \]

    \[ \dfrac{1}{2} -\sin{(-x)} + \dfrac{1}{7} \sin{(7x)} + C. \nonumber \]

    Larry Green (Lake Tahoe Community College)

    • Integrated by Justin Marshall.


    This page titled 2.3: Powers of Trig Functions is shared under a not declared license and was authored, remixed, and/or curated by Larry Green.

    • Was this article helpful?