Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

2.2: Trigonometric Substitution

( \newcommand{\kernel}{\mathrm{null}\,}\)

When we have integrals that involve the square root term

a2+x2

we may be able to trigonometric substitution to solve the integral.

Example 2.2.1

Solve

1x2dx

by substituting x=sinθ and dx=cosθdθ.

The integrand then becomes

1x2=1sin2θ=cos2θ=cosθ

We have

1x2dx=cosθcosθdθ=cos2θdθ=(12+12cos2θ)dθ=12θ+14sin2θ+C=12arcsinx+12sinθcosθ+C=12arcsinx+12x1x2+C

Exercises 2.2.1
  1. 1x2x4dx
  2. 149x2dx

Two Key Formulas

From Trigonometry, we have the following two key formulas:

sec2x=1+tan2x

so

secx=1+tan2x

and

tan2x=sec2x1

so

tanx=sec2x1.

When we have integrals that involve any of the above square roots, we can use the appropriate substitution.

Example 2.2.2

x31+x2dxx=tanθ,dx=sec2θdθ1+x2=1+tan2θ=sec2θ=secθ=tan3θsecθsec2θdθ=tan3θsecθdθ=tan2θtanθsecθdθ=(sec2θ1)secθtanθdθu=secθ,du=secθtanθdθ=(u21)du=u33u+C=sec3θ3secθ+C=(1+x2)3231+x2+C

Exercise 2.2.1
  1. x3x21dx
  2. x29+4x2dx
  3. 1x2+2xdx

Larry Green (Lake Tahoe Community College)

  • Integrated by Justin Marshall.


This page titled 2.2: Trigonometric Substitution is shared under a not declared license and was authored, remixed, and/or curated by Larry Green.

  • Was this article helpful?

Support Center

How can we help?