$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 2.1: Substitution

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

Recall that the chain rule states that

$(f(g(x)))' = f'(g(x))g'(x).$

Integrating both sides we get:

$\int[f(g(x)]'dx = \int[f'(g(x)g'(x)dx]$

or

$\int f'\left( g(x) \right) \, g' (x) \, dx = f\left(g(x)\right) + C$

Example 1

Calculate

$\int \dfrac{2x}{x^2+1}\, dx = \int 2x\left( x^2+1\right)^{-2} \, dx.$

Solution

Let

$u = x^2 +1$

then

$\dfrac{du}{dx} = 2x$

and

$du = 2x \,dx.$

We substitute:

$\int u^{-2} du = -u^{-1} + C = (x^2 +1)^{-1} + C.$

Steps:

1. Find the function derivative pair ($$f$$ and $$f'$$).
2. Let $$u = f(x)$$.
3. Find $$du/dx$$ and adjust for constants.
4. Substitute.
5. Integrate.
6. Resubstitute.

We will try many more examples including those such as

$\int x\, \sin(x^2)\, dx,$

$\int x\, \sqrt{x - 2}\, dx.$