Skip to main content
Mathematics LibreTexts

3.1E: Exercises

  • Page ID
    31079
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Verbal

    Exercise \(\PageIndex{1}\)

    Explain how to add complex numbers.

    Answer

    Add the real parts together and the imaginary parts together.

    Exercise \(\PageIndex{2}\)

    What is the basic principle in multiplication of complex numbers?

    Exercise \(\PageIndex{3}\)

    Give an example to show the product of two imaginary numbers is not always imaginary.

    Answer

    \(i\) times \(i\) equals –1, which is not imaginary. (answers will vary)

    Exercise \(\PageIndex{4}\)

    What is a characteristic of the plot of a real number in the complex plane?

    Algebraic

    For the following exercises, evaluate the algebraic expressions.

    Exercise \(\PageIndex{5}\)

    If \(f(x)=x^2+x−4\), evaluate \(f(2i)\).

    Answer

    \(−8+2i\)

    Exercise \(\PageIndex{6}\)

    If \(f(x)=x^3−2\), evaluate \(f(i)\).

    Exercise \(\PageIndex{7}\)

    If \(f(x)=x^2+3x+5\),evaluate \(f(2+i)\).

    Answer

    \(14+7i\)

    Exercise \(\PageIndex{8}\)

    If \(f(x)=2x^2+x−3\), evaluate \(f(2−3i)\).

    Exercise \(\PageIndex{9}\)

    If \(f(x)=\frac{x+1}{2−x}\), evaluate \(f(5i)\).

    Answer

    \(−\frac{23}{29}+\frac{15}{29}i\)

    Exercise \(\PageIndex{10}\)

    If \(f(x)=\frac{1+2x}{x+3}\), evaluate \(f(4i)\).

    Graphical

    For the following exercises, determine the number of real and nonreal solutions for each quadratic function shown.

    Exercise \(\PageIndex{11}\)

    CNX_Precalc_Figure_03_01_201.jpg

    Answer

    2 real and 0 nonreal

    Exercise \(\PageIndex{12}\)

    CNX_Precalc_Figure_03_01_202.jpg

    For the following exercises, plot the complex numbers on the complex plane.

    Exercise \(\PageIndex{13}\)

    \(1−2i\)

    Answer

    CNX_Precalc_Figure_03_01_203.jpg

    Exercise \(\PageIndex{14}\)

    \(−2+3i\)

    Exercise \(\PageIndex{15}\)

    \(i\)

    Answer

    CNX_Precalc_Figure_03_01_205.jpg

    Exercise \(\PageIndex{16}\)

    \(−3−4i\)

    Numeric

    For the following exercises, perform the indicated operation and express the result as a simplified complex number.

    Exercise \(\PageIndex{17}\)

    \((3+2i)+(5−3i)\)

    Answer

    \(8−i\)

    Exercise \(\PageIndex{18}\)

    \((−2−4i)+(1+6i)\)

    Exercise \(\PageIndex{19}\)

    \((−5+3i)−(6−i)\)

    Answer

    \(−11+4i\)

    Exercise \(\PageIndex{20}\)

    \((2−3i)−(3+2i)\)

    Exercise \(\PageIndex{21}\)

    \((−4+4i)−(−6+9i)\)

    Answer

    \(2−5i\)

    Exercise \(\PageIndex{22}\)

    \((2+3i)(4i)\)

    Exercise \(\PageIndex{23}\)

    \((5−2i)(3i)\)

    Answer

    \(6+15i\)

    Exercise \(\PageIndex{24}\)

    \((6−2i)(5)\)

    Exercise \(\PageIndex{25}\)

    \((−2+4i)(8)\)

    Answer

    \(−16+32i\)

    Exercise \(\PageIndex{26}\)

    \((2+3i)(4−i)\)

    Exercise \(\PageIndex{27}\)

    \((−1+2i)(−2+3i)\)

    Answer

    \(−4−7i\)

    Exercise \(\PageIndex{28}\)

    \((4−2i)(4+2i)\)

    Exercise \(\PageIndex{29}\)

    \((3+4i)(3−4i)\)

    Answer

    25

    Exercise \(\PageIndex{30}\)

    \(\frac{3+4i}{2}\)

    Exercise \(\PageIndex{31}\)

    \(\frac{6−2i}{3}\)

    Answer

    \(2−\frac{2}{3}i\)

    Exercise \(\PageIndex{32}\)

    \(\frac{−5+3i}{2i}\)

    Exercise \(\PageIndex{33}\)

    \(\frac{6+4i}{i}\)

    Answer

    \(4−6i\)

    Exercise \(\PageIndex{34}\)

    \(\frac{2−3i}{4+3i}\)

    Exercise \(\PageIndex{35}\)

    \(\frac{3+4i}{2−i}\)

    Answer

    \(\frac{2}{5}+\frac{11}{5}i\)

    Exercise \(\PageIndex{36}\)

    \(\frac{2+3i}{2−3i}\)

    Exercise \(\PageIndex{37}\)

    \(\sqrt{−9}+3\sqrt{−16}\)

    Answer

    \(15i\)

    Exercise \(\PageIndex{38}\)

    \(−\sqrt{−4}−4\sqrt{−25}\)

    Exercise \(\PageIndex{39}\)

    \(\frac{2+\sqrt{−12}}{2}\)

    Answer

    \(1+i\sqrt{3}\)

    Exercise \(\PageIndex{40}\)

    \(\frac{4+\sqrt{−20}}{2}\)

    Exercise \(\PageIndex{41}\)

    \(i^8\)

    Answer

    \(1\)

    Exercise \(\PageIndex{42}\)

    \(i^{15}\)

    Exercise \(\PageIndex{43}\)

    \(i^{22}\)

    Answer

    \(−1\)

    Technology

    For the following exercises, use a calculator to help answer the questions.

    44. Evaluate \((1+i)^k\) for \(k=4, 8, \) and \(12\).Predict the value if \(k=16\).

    45. Evaluate \((1−i)^k\) for \(k=2, 6,\) and \(10\).Predict the value if \(k=14\).

    Answer: 128i

    46. Evaluate (1+i)k−(1−i)k for \(k=4\), 8, and 12. Predict the value for \(k=16\).

    47. Show that a solution of \(x^6+1=0\) is \(\frac{\sqrt{3}}{2}+\frac{1}{2}i\).

    Answer: \((\frac{\sqrt{3}}{2}+\frac{1}{2}i)^6=−1\)

    48. Show that a solution of \(x^8−1=0\) is \(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\).

    Extensions

    For the following exercises, evaluate the expressions, writing the result as a simplified complex number.

    49. \(\frac{1}{i}+\frac{4}{i^3}\)

    Answer: \(3i\)

    50. \(\frac{1}{i^{11}}−\frac{1}{i^{21}}\)

    51. \(i^7(1+i^2)\)

    Answer: 0

    52. \(i^{−3}+5i^7\)

    53. \(\frac{(2+i)(4−2i)}{(1+i)}\)

    Answer: \(5 – 5i\)

    54. \(\frac{(1+3i)(2−4i)}{(1+2i)}\)

    55. \(\frac{(3+i)^2}{(1+2i)^2}\)

    Answer: \(−2i\)

    56. \(\frac{3+2i}{2+i}+(4+3i)\)

    57. \(\frac{4+i}{i}+\frac{3−4i}{1−i}\)

    Answer: \(\frac{9}{2}−\frac{9}{2}i\)

    58. \(\frac{3+2i}{1+2i}−\frac{2−3i}{3+i}\)


    3.1E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?