Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

7.1E: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Verbal

1) We know g(x)=cosx is an even function, and f(x)=sinx and h(x)=tanxare odd functions. What about G(x)=cos2x, F(x)=sin2x and H(x)=tan2x? Are they even, odd, or neither? Why?

Answer

All three functions, F,G, and H are even.

This is because

F(x)=sin(x)sin(x)=(sinx)(sinx)=sin2x=F(x),G(x)=cos(x)cos(x)=cosxcosx=cos2x=H(x)=tan(x)tan(x)=(tanx)(tanx)=tan2x=H(x)

2) Examine the graph of f(x)=secx on the interval [π,π]How can we tell whether the function is even or odd by only observing the graph of f(x)=secx?

3) After examining the reciprocal identity for sect explain why the function is undefined at certain points.

Answer

When cost=0 then sect=10 which is undefined.

4) All of the Pythagorean identities are related. Describe how to manipulate the equations to get from sin2t+cos2t=1 to the other forms.

Algebraic

For the exercises 5-15, use the fundamental identities to fully simplify the expression.

5) sinxcosxsecx

Answer

sinx

6) sin(x)cos(x)csc(x)

7) tanxsinx+secxcos2x

Answer

secx

8) cscx+cosxcot(x)

9) cott+tantsec(t)

Answer

cscx

10) 3sin3tcsct+cos2t+2cos(t)cost

11) tan(x)cot(x)

Answer

1

12) sin(x)cosxsecxcscxtanxcotx

13) 1+tan2θcsc2θ+sin2θ+1secθ

Answer

sec2x

14) (tanxcsc2x+tanxsec2x)(1+tanx1+cotx)1cos2x

15) 1cos2xtan2x+2sin2x

Answer

sin2x+1

For the exercises 16-28, simplify the first trigonometric expression by writing the simplified form in terms of the second expression.

16) tanx+cotxcscx;cosx

17) secx+cscx1+tanx;sinx

Answer

1sinx

18) cosx1+sinx+tanx;cosx

19) 1sinxcosxcotx;cotx

Answer

1cotx

20) 11cosxcosx1+cosx;cscx

21) (secx+cscx)(sinx+cosx)2cotx;tanx

Answer

tanx

22) 1cscxsinx;secx and tanx

23) 1sinx1+sinx1+sinx1sinx;secx and tanx

Answer

4secxtanx

24) tanx;secx

25) secx;cotx

Answer

±1cot2x+1

26) secx;sinx

27) cotx;sinx

Answer

±1sin2xsinx

28) cotx;cscx

For the exercises 29-33, verify the identity.

29) cosxcos3x=cosxsin2x

Answer

Answers will vary. Sample proof:

cosxcos3x=cosx(1cos2x)=cosxsinx

30) cosx(tanxsec(x))=sinx1

31) 1+sin2xcos2x=1cos2x+sin2xcos2x=1+2tan2x

Answer

Answers will vary. Sample proof:

1+sin2xcos2x=1cos2x+sin2xcos2x=sec2x+tan2x=tan2x+1+tan2x=1+2tan2x

32) (sinx+cosx)2=1+2sinxcosx

33) cos2xtan2x=2sin2xsec2x

Answer

Answers will vary. Sample proof:

cos2xtan2x=1sin2x(sec2x1)=1sin2xsec2x+1=2sin2xsec2x

Extensions

For the exercises 34-39, prove or disprove the identity.

34) 11+cosx11cos(x)=2cotxcscx

35) csc2x(1+sin2x)=cot2x

Answer

False

36) (sec2(x)tan2xtanx)(2+2tanx2+2cotx)2sin2x=cos2x

37) tanxsecxsin(x)=cos2x

Answer

False

38) sec(x)tanx+cotx=sin(x)

39) 1+sinxcosx=cosx1+sin(x)

Answer

Proved with negative and Pythagorean identities

For the exercises 40-, determine whether the identity is true or false. If false, find an appropriate equivalent expression.

40) cos2θsin2θ1tanθ=sin2θ

41) 3sin2θ+4cos2θ=3+cos2θ

Answer

True

3sin2θ+4cos2θ=3sin2θ+3cos2θ+cos2θ=3(sin2θ+cos2θ)+cos2θ=3+cos2θ

42) secθ+tanθcotθ+cosθ=sec2θ


7.1E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?