7.1E: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Verbal
1) We know g(x)=cosx is an even function, and f(x)=sinx and h(x)=tanxare odd functions. What about G(x)=cos2x, F(x)=sin2x and H(x)=tan2x? Are they even, odd, or neither? Why?
- Answer
-
All three functions, F,G, and H are even.
This is because
F(−x)=sin(−x)sin(−x)=(−sinx)(−sinx)=sin2x=F(x),G(−x)=cos(−x)cos(−x)=cosxcosx=cos2x=H(−x)=tan(−x)tan(−x)=(−tanx)(−tanx)=tan2x=H(x)
2) Examine the graph of f(x)=secx on the interval [−π,π]How can we tell whether the function is even or odd by only observing the graph of f(x)=secx?
3) After examining the reciprocal identity for sect explain why the function is undefined at certain points.
- Answer
-
When cost=0 then sect=10 which is undefined.
4) All of the Pythagorean identities are related. Describe how to manipulate the equations to get from sin2t+cos2t=1 to the other forms.
Algebraic
For the exercises 5-15, use the fundamental identities to fully simplify the expression.
5) sinxcosxsecx
- Answer
-
sinx
6) sin(−x)cos(−x)csc(−x)
7) tanxsinx+secxcos2x
- Answer
-
secx
8) cscx+cosxcot(−x)
9) cott+tantsec(−t)
- Answer
-
cscx
10) 3sin3tcsct+cos2t+2cos(−t)cost
11) −tan(−x)cot(−x)
- Answer
-
−1
12) −sin(−x)cosxsecxcscxtanxcotx
13) 1+tan2θcsc2θ+sin2θ+1secθ
- Answer
-
sec2x
14) (tanxcsc2x+tanxsec2x)(1+tanx1+cotx)−1cos2x
15) 1−cos2xtan2x+2sin2x
- Answer
-
sin2x+1
For the exercises 16-28, simplify the first trigonometric expression by writing the simplified form in terms of the second expression.
16) tanx+cotxcscx;cosx
17) secx+cscx1+tanx;sinx
- Answer
-
1sinx
18) cosx1+sinx+tanx;cosx
19) 1sinxcosx−cotx;cotx
- Answer
-
1cotx
20) 11−cosx−cosx1+cosx;cscx
21) (secx+cscx)(sinx+cosx)−2−cotx;tanx
- Answer
-
tanx
22) 1cscx−sinx;secx and tanx
23) 1−sinx1+sinx−1+sinx1−sinx;secx and tanx
- Answer
-
−4secxtanx
24) tanx;secx
25) secx;cotx
- Answer
-
±√1cot2x+1
26) secx;sinx
27) cotx;sinx
- Answer
-
±√1−sin2xsinx
28) cotx;cscx
For the exercises 29-33, verify the identity.
29) cosx−cos3x=cosxsin2x
- Answer
-
Answers will vary. Sample proof:
cosx−cos3x=cosx(1−cos2x)=cosxsinx
30) cosx(tanx−sec(−x))=sinx−1
31) 1+sin2xcos2x=1cos2x+sin2xcos2x=1+2tan2x
- Answer
-
Answers will vary. Sample proof:
1+sin2xcos2x=1cos2x+sin2xcos2x=sec2x+tan2x=tan2x+1+tan2x=1+2tan2x
32) (sinx+cosx)2=1+2sinxcosx
33) cos2x−tan2x=2−sin2x−sec2x
- Answer
-
Answers will vary. Sample proof:
cos2x−tan2x=1−sin2x−(sec2x−1)=1−sin2x−sec2x+1=2−sin2x−sec2x
Extensions
For the exercises 34-39, prove or disprove the identity.
34) 11+cosx−11−cos(−x)=−2cotxcscx
35) csc2x(1+sin2x)=cot2x
- Answer
-
False
36) (sec2(−x)−tan2xtanx)(2+2tanx2+2cotx)−2sin2x=cos2x
37) tanxsecxsin(−x)=cos2x
- Answer
-
False
38) sec(−x)tanx+cotx=−sin(−x)
39) 1+sinxcosx=cosx1+sin(−x)
- Answer
-
Proved with negative and Pythagorean identities
For the exercises 40-, determine whether the identity is true or false. If false, find an appropriate equivalent expression.
40) cos2θ−sin2θ1−tanθ=sin2θ
41) 3sin2θ+4cos2θ=3+cos2θ
- Answer
-
True
3sin2θ+4cos2θ=3sin2θ+3cos2θ+cos2θ=3(sin2θ+cos2θ)+cos2θ=3+cos2θ
42) secθ+tanθcotθ+cosθ=sec2θ