Skip to main content
Mathematics LibreTexts

3.3E: Exercises for Section 3.3

  • Page ID
    96024
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In exercises 1 - 4, find \(f'(x)\) for each function.

    1) \(f(x)=(x+2)(2x^2−3)\)

    2) \(f(x)=\dfrac{4x^3−2x+1}{x^2}\)

    Answer
    \(f'(x) = \dfrac{4x^4+2x^2−2x}{x^4}\)

    3) \(f(x)=\dfrac{x^2+4}{x^2−4}\)

    4) \(f(x)=\dfrac{x+9}{x^2−7x+1}\)

    Answer
    \(f'(x) = \dfrac{−x^2−18x+64}{(x^2−7x+1)^2}\)

    In exercises 5 - 8, assume that \(f(x)\) and \(g(x)\) are both differentiable functions for all \(x\). Find the derivative of each of the functions \(h(x)\).

    5) \(h(x)=4f(x)+\dfrac{g(x)}{7}\)

    6) \(h(x)=x^3f(x)\)

    Answer
    \(h'(x)=3x^2f(x)+x^3f′(x)\)

    7) \(h(x)=\dfrac{f(x)g(x)}{2}\)

    8) \(h(x)=\dfrac{3f(x)}{g(x)+2}\)

    Answer
    \(h'(x)=\dfrac{3f′(x)(g(x)+2)−3f(x)g′(x)}{(g(x)+2)^2}\)

    For exercises 9 - 12, assume that \(f(x)\) and \(g(x)\) are both differentiable functions with values as given in the following table. Use the following table to calculate the following derivatives.

    \(x\) 1 2 3 4
    \(f(x)\) 3 5 −2 0
    \(g(x)\) 2 3 −4 6
    \(f′(x)\) −1 7 8 −3
    \(g′(x)\) 4 1 2 9

    9) Find \(h′(1)\) if \(h(x)=x f(x)+4g(x)\).

    10) Find \(h′(2)\) if \(h(x)=\dfrac{f(x)}{g(x)}\).

    Answer
    \(h'(2) =\frac{16}{9}\)

    11) Find \(h′(3)\) if \(h(x)=2x+f(x)g(x)\).

    12) Find \(h′(4)\) if \(h(x)=\dfrac{1}{x}+\dfrac{g(x)}{f(x)}\).

    Answer
    \(h'(4)\) is undefined.

    In exercises 13 - 15, use the following figure to find the indicated derivatives, if they exist.

    Two functions are graphed: f(x) and g(x). The function f(x) starts at (−1, 5) and decreases linearly to (3, 1) at which point it increases linearly to (5, 3). The function g(x) starts at the origin, increases linearly to (2.5, 2.5), and then remains constant at y = 2.5.

    13) Let \(h(x)=f(x)+g(x)\). Find

    a) \(h′(1)\),

    b) \(h′(3)\), and

    c) \(h′(4)\).

    14) Let \(h(x)=f(x)g(x).\) Find

    a) \(h′(1),\)

    b) \(h′(3)\), and

    c) \(h′(4).\)

    Answer
    a. \(h'(1) = 2\),
    b. \(h'(3)\) does not exist,
    c. \(h'(4) = 2.5\)

    15) Let \(h(x)=\dfrac{f(x)}{g(x)}.\) Find

    a) \(h′(1),\)

    b) \(h′(3)\), and

    c) \(h′(4).\)

    16) Find the equation of the tangent line to the graph of \(f(x)=(3x−x^2)(3−x−x^2)\) at \(x=1\).

    Answer
    \(y=−5x+7\)

    17) [T] A herring swimming along a straight line has traveled \(s(t)=\dfrac{t^2}{t^2+2}\) feet in \(t\)

    seconds. Determine the velocity of the herring when it has traveled 3 seconds.

    Answer
    \(\frac{12}{121}\) or 0.0992 ft/s

    18) [T] The concentration of antibiotic in the bloodstream \(t\) hours after being injected is given by the function \(C(t)=\dfrac{2t^2+t}{t^3+50}\), where \(C\) is measured in milligrams per liter of blood.

    a. Find the rate of change of \(C(t).\)

    b. Determine the rate of change for \(t=8,12,24\),and \(36\).

    c. Briefly describe what seems to be occurring as the number of hours increases.

    Answer
    a. \(\dfrac{−2t^4−2t^3+200t+50}{(t^3+50)^2}\)
    b. \(−0.02395\) mg/L-hr, \(−0.01344\) mg/L-hr, \(−0.003566\) mg/L-hr, \(−0.001579\) mg/L-hr
    c. The rate at which the concentration of drug in the bloodstream decreases is slowing to 0 as time increases.

    Contributors and Attributions

    • Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.


    3.3E: Exercises for Section 3.3 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?