Skip to main content
Mathematics LibreTexts

2.9: Chapter Review Exercises

  • Page ID
    128928

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    True or False. In exercises 1 - 4, justify your answer with a proof or a counterexample.

    1) A function has to be continuous at \(x=a\) if the \(\displaystyle \lim_{x→a}f(x)\) exists.

    2) You can use the quotient rule to evaluate \(\displaystyle \lim_{x→0}\frac{\sin x}{x}\).

    Answer
    False, since we cannot have \(\displaystyle \lim_{x→0}x=0\) in the denominator.

    3) If there is a vertical asymptote at \(x=a\) for the function \(f(x)\), then \(f\) is undefined at the point \(x=a\).

    4) If \(\displaystyle \lim_{x→a}f(x)\) does not exist, then \(f\) is undefined at the point \(x=a\).

    Answer
    False. A jump discontinuity is possible.

    5) Using the graph, find each limit or explain why the limit does not exist.

    a. \(\displaystyle \lim_{x→−1}f(x)\)

    b. \(\displaystyle \lim_{x→1}f(x)\)

    c. \(\displaystyle \lim_{x→0^+}f(x)\)

    d. \(\displaystyle \lim_{x→2}f(x)\)

    A graph of a piecewise function with several segments. The first is a decreasing concave up curve existing for x < -1. It ends at an open circle at (-1, 1). The second is an increasing linear function starting at (-1, -2) and ending at (0,-1). The third is an increasing concave down curve existing from an open circle at (0,0) to an open circle at (1,1). The fourth is a closed circle at (1,-1). The fifth is a line with no slope existing for x > 1, starting at the open circle at (1,1).

    In exercises 6 - 15, evaluate the limit algebraically or explain why the limit does not exist.

    6) \(\displaystyle \lim_{x→2}\frac{2x^2−3x−2}{x−2}\)

    Answer
    \(5\)

    7) \(\displaystyle \lim_{x→0}3x^2−2x+4\)

    8) \(\displaystyle \lim_{x→3}\frac{x^3−2x^2−1}{3x−2}\)

    Answer
    \(8/7\)

    9) \(\displaystyle \lim_{x→π/2}\frac{\cot x}{\cos x}\)

    10) \(\displaystyle \lim_{x→−5}\frac{x^2+25}{x+5}\)

    Answer
    DNE

    11) \(\displaystyle \lim_{x→2}\frac{3x^2−2x−8}{x^2−4}\)

    12) \(\displaystyle \lim_{x→1}\frac{x^2−1}{x^3−1}\)

    Answer
    \(2/3\)

    13) \(\displaystyle \lim_{x→1}\frac{x^2−1}{\sqrt{x}−1}\)

    14) \(\displaystyle \lim_{x→4}\frac{4−x}{\sqrt{x}−2}\)

    Answer
    \(−4\)

    15) \(\displaystyle \lim_{x→4}\frac{1}{\sqrt{x}−2}\)

    In exercises 16 - 17, use the squeeze theorem to prove the limit.

    16) \(\displaystyle \lim_{x→0}x^2\cos(2πx)=0\)

    Answer
    Since \(−1≤\cos(2πx)≤1\), then \(−x^2≤x^2\cos(2πx)≤x^2\). Since \(\displaystyle \lim_{x→0}x^2=0=\lim_{x→0}−x^2\), it follows that \(\displaystyle \lim_{x→0}x^2\cos(2πx)=0\).

    17) \(\displaystyle \lim_{x→0}x^3\sin\left(\frac{π}{x}\right)=0\)

    18) Determine the domain such that the function \(f(x)=\sqrt{x−2}+xe^x\) is continuous over its domain.

    Answer
    \([2,∞]\)

    In exercises 19 - 20, determine the value of \(c\) such that the function remains continuous. Draw your resulting function to ensure it is continuous.

    19) \(f(x)=\begin{cases}x^2+1, & \text{if } x>c\\2^x, & \text{if } x≤c\end{cases}\)

    20) \(f(x)=\begin{cases}\sqrt{x+1}, & \text{if } x>−1\\x^2+c, & \text{if } x≤−1\end{cases}\)

    In exercises 21 - 22, use the precise definition of limit to prove the limit.

    21) \(\displaystyle \lim_{x→1}\,(8x+16)=24\)

    22) \(\displaystyle \lim_{x→0}x^3=0\)

    Answer
    \(δ=\sqrt[3]{ε}\)

    23) A ball is thrown into the air and the vertical position is given by \(x(t)=−4.9t^2+25t+5\). Use the Intermediate Value Theorem to show that the ball must land on the ground sometime between 5 sec and 6 sec after the throw.

    24) A particle moving along a line has a displacement according to the function \(x(t)=t^2−2t+4\), where \(x\) is measured in meters and \(t\) is measured in seconds. Find the average velocity over the time period \(t=[0,2]\).

    Answer
    \(0\) m/sec

    25) From the previous exercises, estimate the instantaneous velocity at \(t=2\) by checking the average velocity within \(t=0.01\) sec.

     


    This page titled 2.9: Chapter Review Exercises is shared under a not declared license and was authored, remixed, and/or curated by Chau D Tran.

    • Was this article helpful?