Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

8.3: Table of Derivatives

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}

General Formulas

1. \quad \dfrac{d}{dx}\left(c\right)=0

2. \quad \dfrac{d}{dx}\left(f(x)+g(x)\right)=f′(x)+g′(x)

3. \quad \dfrac{d}{dx}\left(f(x)g(x)\right)=f′(x)g(x)+f(x)g′(x)

4. \quad \dfrac{d}{dx}\left(x^n\right)=nx^{n−1},\quad \text{for real numbers }n

5. \quad \dfrac{d}{dx}\left(cf(x)\right)=cf′(x)

6. \quad \dfrac{d}{dx}\left(f(x)−g(x)\right)=f′(x)−g′(x)

7. \quad \dfrac{d}{dx}\left(\dfrac{f(x)}{g(x)}\right)=\dfrac{g(x)f′(x)−f(x)g′(x)}{(g(x))^2}

8. \quad \dfrac{d}{dx}\left[f(g(x))\right]=f′(g(x))·g′(x)

Trigonometric Functions

9. \quad \dfrac{d}{dx}\left(\sin x\right)=\cos x

10. \quad \dfrac{d}{dx}\left(\tan x\right)=\sec^2x

11. \quad \dfrac{d}{dx}\left(\sec x\right)=\sec x\tan x

12. \quad \dfrac{d}{dx}\left(\cos x\right)=−\sin x

13. \quad \dfrac{d}{dx}\left(\cot x\right)=−\csc^2x

14. \quad \dfrac{d}{dx}\left(\csc x\right)=−\csc x\cot x

Inverse Trigonometric Functions

15. \quad \dfrac{d}{dx}\left(\arcsin x\right)=\dfrac{1}{\sqrt{1−x^2}}

16. \quad \dfrac{d}{dx}\left(\arctan x\right)=\dfrac{1}{1+x^2}

17. \quad \dfrac{d}{dx}\left(\text{arcsec}\, x\right)=\dfrac{1}{|x|\sqrt{x^2−1}}

18. \quad \dfrac{d}{dx}\left(\arccos x\right)=\dfrac{-1}{\sqrt{1−x^2}}

19. \quad \dfrac{d}{dx}\left(\text{arccot}\, x\right)=\dfrac{-1}{1+x^2}

20. \quad \dfrac{d}{dx}\left(\text{arccsc}\, x\right)=\dfrac{-1}{|x|\sqrt{x^2−1}}

Exponential and Logarithmic Functions

21. \quad \dfrac{d}{dx}\left(e^x\right)=e^x

22. \quad \dfrac{d}{dx}\left(\ln|x|\right)=\dfrac{1}{x}

23. \quad \dfrac{d}{dx}\left(b^x\right)=b^x\ln b

24. \quad \dfrac{d}{dx}\left(\log_bx\right)=\dfrac{1}{x\ln b}

Hyperbolic Functions

25. \quad \dfrac{d}{dx}\left(\sinh x\right)=\cosh x

26. \quad \dfrac{d}{dx}\left(\tanh x\right)=\text{sech}^2 \,x

27. \quad \dfrac{d}{dx}\left(\text{sech} x\right)=−\text{sech} \,x\tanh x

28. \quad \dfrac{d}{dx}\left(\cosh x\right)=\sinh x

29. \quad \dfrac{d}{dx}\left(\coth x\right)=−\text{csch}^2 \,x

30. \quad \dfrac{d}{dx}\left(\text{csch} \,x\right)=−\text{csch} x\coth x

Inverse Hyperbolic Functions

31. \quad \dfrac{d}{dx}\left(\text{arcsinh}\, x\right)=\dfrac{1}{\sqrt{x^2+1}}

32. \quad \dfrac{d}{dx}\left(\text{arctanh}\, x\right)=\dfrac{1}{1-x^2}\quad (|x|<1)

33. \quad \dfrac{d}{dx}\left(\text{arcsech} \,x\right)=\dfrac{-1}{x\sqrt{1-x^2}}\quad (0<x<1)

34. \quad \dfrac{d}{dx}\left(\text{arccosh}\, x\right)=\dfrac{1}{\sqrt{x^2-1}}\quad (x>1)

35. \quad \dfrac{d}{dx}\left(\text{arccoth}\, x\right)=\dfrac{1}{1-x^2}\quad (|x|>1)

36. \quad \dfrac{d}{dx}\left(\text{arccsch}\,x\right)=\dfrac{-1}{|x|\sqrt{1+x^2}}\quad (x≠0)

Contributors

  • Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

  • Modified to change inverse trig notation by Paul Seeburger (Monroe Community College)

8.3: Table of Derivatives is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?