Skip to main content
Mathematics LibreTexts

3.3E: Exercises - Solving Systems with Gauss-Jordan Elimination

  • Page ID
    49623
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

     

    Write an augmented matrix to represent each system of equations.

    1) \(\begin{align*} 5x-y &= 4\\ x+6y &= 2 \end{align*}\)

    2) \(\begin{align*} -3x-5y &= 13\\ -x+4y &= 10 \end{align*}\)

    3) \(\begin{align*} 3x+7y &= 1\\ 2x+4y &= 0 \end{align*}\)

     

    Write each augmented matrix as a system of equations.

    4) \( \left[ \begin{array}{rr|r} -4&3&5  \\ 2&-1&1 \end{array}\right]\)

    5) \( \left[ \begin{array}{rrr|r} 1&5&2&4  \\ -2&9&0&-4 \\ 2&-1&1&5 \end{array}\right]\)

    6) \( \left[ \begin{array}{rrr|r} 1&0&0&-2  \\ 0&1&0&3 \\ 0&0&1&7 \end{array}\right]\)

     

    Use Gaussian Elimination to solve each system of equations.

    7) \(\begin{align*} 5x+9y &= 16\\ x+2y &= 4 \end{align*}\)

    8) \(\begin{align*} \dfrac{1}{3}x+\dfrac{1}{9}y &= \dfrac{2}{9}\\ -\dfrac{1}{2}x+\dfrac{4}{5}y &= -\dfrac{1}{3} \end{align*}\)

    9) \(\begin{align*} -0.2x+0.4y &= 0.6\\ x-2y &= -3 \end{align*}\)

    10) \(\begin{align*} 3x+6y &= 11\\ 2x+4y &= 9 \end{align*}\)

    11) \(\begin{align*} x+y+z &= 197\\ -2x+y &= 6\\x+y-z&=37 \end{align*}\)

    12) \(\begin{align*} 2x-y+3z &= 17\\ -5x+4y-2z &= -46\\2y+5z&=-7 \end{align*}\)

     

    Write a system of equations to represent each scenario.  Then use Gaussian elimination to solve for the desired quantity.

    13) A cell phone factory has a cost of production \(C(x)=150x+10,000\) and a revenue function \(R(x)=200x\). What is the break-even point?

    14) The startup cost for a restaurant is \(\$120,000\), and each meal costs \(\$10\) for the restaurant to make. If each meal is then sold for \(\$15\), after how many meals does the restaurant break even?

    15) If an investor invests a total of \(\$25,000\) into two bonds, one that pays \(3\%\) simple interest, and the other that pays \(2\dfrac{7}{8}\%\) interest, and the investor earns \(\$737.50\) annual interest, how much was invested in each account?

     

    Contributors and Attributions


    3.3E: Exercises - Solving Systems with Gauss-Jordan Elimination is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?