9: Linear Higher Order Differential Equations
( \newcommand{\kernel}{\mathrm{null}\,}\)
This chapter extend the results obtained in Chapter 5 for linear second order equations to linear higher order equations.
- 9.1: Introduction to Linear Higher Order Equations
- This section presents a theoretical introduction to linear higher order equations. We will sketch the general theory of linear n-th order equations.
- 9.2: Higher Order Constant Coefficient Homogeneous Equations
- In this section we consider the homogeneous constant coefficient equation of n-th order.
- 9.3: Undetermined Coefficients for Higher Order Equations
- This section presents the method of undetermined coefficients for higher order equations.
- 9.4: Variation of Parameters for Higher Order Equations
- This section extends the method of variation of parameters to higher order equations. We’ll show how to use the method of variation of parameters to find a particular solution of Ly=F, provided that we know a fundamental set of solutions of the homogeous equation: Ly=0.
Thumbnail: The Wronskian. In general, for an nth order linear differential equation, if (n−1) solutions are known, the last one can be determined by using the Wronskian.