15.1: Asymptotes
- Page ID
- 181512
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Media
Title | Level of Approach | Type | Length |
---|---|---|---|
A Review of Rational Functions | College Algebra (Algebra 2.5) | Review | 16:30 |
Identifying the Vertical Asymptotes of Rational Functions | College Algebra (Algebra 2.5) | Lecture | 7:44 |
Identifying the Horizontal Asymptotes of Rational Functions | College Algebra (Algebra 2.5) | Lecture | 16:19 |
Identifying the Slant Asymptotes of Rational Functions | College Algebra (Algebra 2.5) | Lecture | 12:44 |
Asymptotic Behavior of Rational Functions | Precalculus (Algebra 3) | Lecture | 56:49 |
Definitions and Theorems
A vertical asymptote of a graph is a vertical line \(x = a\) where the graph tends toward positive or negative infinity as the inputs approach \(a\) from either the left or the right. We write\[ \begin{array}{rcll}
f(x) \to \infty & \text{ as } & x \to a^- & \text{ if the graph increases without bound as }x\text{ approaches }a\text{ from the left,} \\[6pt]
f(x) \to -\infty & \text{ as } & x \to a^- & \text{ if the graph decreases without bound as }x\text{ approaches }a\text{ from the left,} \\[6pt]
f(x) \to \infty & \text{ as } & x \to a^+ & \text{ if the graph increases without bound as }x\text{ approaches }a\text{ from the right,} \\[6pt]
& \text{ and } & & \\[6pt]
f(x) \to -\infty & \text{ as } & x \to a^+ & \text{ if the graph decreases without bound as }x\text{ approaches }a\text{ from the right.} \\[6pt]
\end{array} \nonumber \]
The end behavior of a graph is a description, usually as a function, of what the function values of the graph tend to approach as the inputs increase or decrease without bound.
A horizontal asymptote of a graph is a horizontal line \(y=b\) where the graph approaches the line as the inputs increase or decrease without bound. We write\[ \begin{array}{rcll}
f(x) \to b & \text{ as } & x \to \infty & \text{ if the graph approaches the line }y = b\text{ as }x\text{ increases without bound} \\[6pt]
& \text{ and } & & \\[6pt]
f(x) \to b & \text{ as } & x \to -\infty & \text{ if the graph approaches the line }y = b\text{ as }x\text{ decreases without bound.} \\[6pt]
\end{array} \nonumber \]
A single point where the graph of a function is not defined, indicated by an open circle on the graph, is called a removable discontinuity.
A removable discontinuity for the graph of a rational function occurs at \(x=a\) if
- \(a\) is a zero for a factor in the denominator that is common with a factor in the numerator, and
- after simplification, \( a \) is no longer a zero of the denominator.
- Proof
- The most elegant proof of this theorem occurs in Calculus.
Let \( f(x) = \frac{N(x)}{D(x)} \) be a rational function. Then
- \( f(x) \) has a horizontal asymptote of \( y = 0 \) if \( \deg(D(x)) > \deg(N(x)) \)
- \( f(x) \) has a horizontal asymptote of \( y = \frac{a}{b} \) if \( \deg(D(x)) = \deg(N(x)) \), where \( a \) is the lead coefficient of \( N(x) \) and \( b \) is the lead coefficient of \( D(x) \)
- \( f(x) \) has a slant or oblique asymptote if \( \deg(D(x)) < \deg(N(x)) \). The asymptote is a slant asymptote if \( \deg(N(x)) = \deg(D(x)) + 1 \); otherwise, it is an oblique asymptote. In either case, the equation of the asymptote is the quotient after dividing \( N(x) \) by \( D(x) \).