Skip to main content
Mathematics LibreTexts

6.4.0: Graph Theory

  • Page ID
    76153
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    There are several definitions that are important to understand before delving into Graph Theory. They are:

    • A graph is a picture of dots called vertices and lines called edges.
    • An edge that starts and ends at the same vertex is called a loop.
    • If there are two or more edges directly connecting the same two vertices, then these edges are called multiple edges.
    • If there is a way to get from one vertex of a graph to all the other vertices of the graph, then the graph is connected.
    • If there is even one vertex of a graph that cannot be reached from every other vertex, then the graph is disconnected.

    Example \(\PageIndex{1}\): Graph Example

    VLF0Spj5Q2aEcZXSKySpbI6h9c3V1ElNmXG7Z_itBxepjvJOa9eVW5oTKAfmsrpchUvM4uZf6kR6MXTw1npLzExu-o2jZ1e5JyO7qF-QgSnhXdpibR13V-W4T7bj_TbrUIEUX3A
    Figure \(\PageIndex{1}\): Graph 1

    In the above graph, the vertices are U, V, W, and Z and the edges are UV, VV, VW, UW, WZ1, and WZ2.

    This is a connected graph. VV is a loop. WZ1, and WZ2 are multiple edges.

    Example \(\PageIndex{2}\): Graph Example

    OJyZfdi4LNw86BgICWN_aAYnl_Fj5a63ihZzDt_2Ut_qw8V8DZVrXMB8cyx0IlIuFsM1pVTvVBUTGPaWMYGPPqi0mf3Yw_ZDkSBS0HCI2SjObbOCWmekyuFBWb_nMUqMIZ6dKGI
    Figure \(\PageIndex{2}\): Graph 2 Figure \(\PageIndex{3}\): Graph 3

    The graph in Figure \(\PageIndex{2}\) is connected while the graph in Figure \(\PageIndex{3}\) is disconnected.

    Definition: Graph Concepts and Terminology

    • Order of a Network: the number of vertices in the entire network or graph
    • Adjacent Vertices: two vertices that are connected by an edge
    • Adjacent Edges: two edges that share a common vertex
    • Degree of a Vertex: the number of edges at that vertex
    • Path: a sequence of vertices with each vertex adjacent to the next one that starts and ends at different vertices and travels over any edge only once
    • Circuit: a path that starts and ends at the same vertex
    • Bridge: an edge such that if it were removed from a connected graph, the graph would become disconnected

    Example \(\PageIndex{3}\): Graph Terminology

    _y_lsEHDvHfb6apCHznOpFm6kpviJfItZdZHIgrQCpqx5iUL-noMMqI-bMoTkI5HQHrgIg7Ph4qjWor5iCLKGWXQqCtkoRfjbxohtGrhv5no1P0xxljl9ZnBUmT_5c2cjZqBGH0
    Figure \(\PageIndex{4}\): Graph 4

    In the above graph the following is true:

    • Vertex A is adjacent to vertex B, vertex C, vertex D, and vertex E.
    • Vertex F is adjacent to vertex C, and vertex D.
    • Edge DF is adjacent to edge BD, edge AD, edge CF, and edge DE.

    The degrees of the vertices:

    A 4
    B 4
    C 4
    D 4
    E 4
    F 2

    Here are some paths in the above graph: (there are many more than listed)

    A,B,D

    A,B,C,E

    F,D,E,B,C

    Here are some circuits in the above graph: (there are many more than listed)

    B,A,D,B

    B,C,F,D,B

    F,C, E, D, F

    The above graph does not have any bridges.


    This page titled 6.4.0: Graph Theory is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Maxie Inigo, Jennifer Jameson, Kathryn Kozak, Maya Lanzetta, & Kim Sonier via source content that was edited to the style and standards of the LibreTexts platform.