Skip to main content
Mathematics LibreTexts

5.1E: Exercises

  • Page ID
    120160
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Exercises

    In Exercises 1 - 12, use the given pair of functions to find the following values if they exist.

    • \((g\circ f)(0)\)
    • \((f\circ g)(-1)\)
    • \((f \circ f)(2)\)
    • \((g\circ f)(-3)\)
    • \((f\circ g)\left(\dfrac{1}{2}\right)\)
    • \((f \circ f)(-2)\)
    1. \(f(x) = x^2\), \(g(x) = 2x+1\)
    2. \(f(x) = 4-x\), \(g(x) = 1-x^2\)
    3. \(f(x) = 4-3x\), \(g(x) = |x|\)
    4. \(f(x) = |x-1|\), \(g(x) = x^2-5\)
    5. \(f(x) = 4x+5\), \(g(x) = \sqrt{x}\)
    6. \(f(x) = \sqrt{3-x}\), \(g(x) = x^2+1\)
    7. \(f(x) = 6-x-x^2\), \(g(x) = x\sqrt{x+10}\)
    8. \(f(x) = \sqrt[3]{x+1}\), \(g(x) = 4x^2-x\)
    9. \(f(x) = \dfrac{3}{1-x}\), \(g(x) = \dfrac{4x}{x^2+1}\)
    10. \(f(x) = \dfrac{x}{x+5}\), \(g(x) = \dfrac{2}{7-x^2}\)
    11. \(f(x) = \dfrac{2x}{5-x^2}\), \(g(x) = \sqrt{4x+1}\)
    12. \(f(x) =\sqrt{2x+5}\), \(g(x) = \dfrac{10x}{x^2+1}\)

    In Exercises 13 - 24, use the given pair of functions to find and simplify expressions for the following functions and state the domain of each using interval notation.

    • \((g \circ f)(x)\)
    • \((f \circ g)(x)\)
    • \((f \circ f)(x)\)
    1. \(f(x) = 2x+3\), \(g(x) = x^2-9\)
    2. \(f(x) = x^2 -x+1\), \(g(x) = 3x-5\)
    3. \(f(x) = x^2-4\), \(g(x) = |x|\)
    4. \(f(x) = 3x-5\), \(g(x) = \sqrt{x}\)
    5. \(f(x) = |x+1|\), \(g(x) = \sqrt{x}\)
    6. \(f(x) = 3-x^2\), \(g(x) = \sqrt{x+1}\)
    7. \(f(x) = |x|\), \(g(x) = \sqrt{4-x}\)
    8. \(f(x) = x^2-x-1\), \(g(x) = \sqrt{x-5}\)
    9. \(f(x) = 3x-1\), \(g(x) = \dfrac{1}{x+3}\)
    10. \(f(x) = \dfrac{3x}{x-1}\), \(g(x) =\dfrac{x}{x-3}\)
    11. \(f(x) = \dfrac{x}{2x+1}\), \(g(x) = \dfrac{2x+1}{x}\)
    12. \(f(x) = \dfrac{2x}{x^2-4}\), \(g(x) =\sqrt{1-x}\)

    In Exercises 25 - 30, use \(f(x) = -2x\), \(g(x) = \sqrt{x}\) and \(h(x) = |x|\) to find and simplify expressions for the following functions and state the domain of each using interval notation.

    1. \((h\circ g \circ f)(x)\)
    2. \((h\circ f \circ g)(x)\)
    3. \((g\circ f \circ h)(x)\)
    4. \((g\circ h \circ f)(x)\)
    5. \((f\circ h \circ g)(x)\)
    6. \((f\circ g \circ h)(x)\)

    In Exercises 31 - 40, write the given function as a composition of two or more non-identity functions. (There are several correct answers, so check your answer using function composition.)

    1. \(p(x) = (2x+3)^3\)
    2. \(P(x) = \left(x^2-x+1\right)^5\)
    3. \(h(x) = \sqrt{2x-1}\)
    4. \(H(x) = |7-3x|\)
    5. \(r(x) = \dfrac{2}{5x+1}\)
    6. \(R(x) = \dfrac{7}{x^2-1}\)
    7. \(q(x) = \dfrac{|x|+1}{|x|-1}\)
    8. \(Q(x) = \dfrac{2x^3+1}{x^3-1}\)
    9. \(v(x) = \dfrac{2x+1}{3-4x}\)
    10. \(w(x) = \dfrac{x^2}{x^4+1}\)
    11. Write the function \(F(x) = \sqrt{\dfrac{x^{3} + 6}{x^{3} - 9}}\) as a composition of three or more non-identity functions.
    12. Let \(g(x) = -x, \, h(x) = x + 2, \, j(x) = 3x\) and \(k(x) = x - 4\). In what order must these functions be composed with \(f(x) = \sqrt{x}\) to create \(F(x) = 3\sqrt{-x + 2} - 4\)?
    13. What linear functions could be used to transform \(f(x) = x^{3}\) into \(F(x) = -\dfrac{1}{2}(2x - 7)^{3} + 1\)? What is the proper order of composition?

    In Exercises 44 - 55, let \(f\) be the function defined by \[f = \{(-3, 4), (-2, 2), (-1, 0), (0, 1), (1, 3), (2, 4), (3, -1)\}\nonumber\] and let \(g\) be the function defined by\[g = \{(-3, -2), (-2, 0), (-1, -4), (0, 0), (1, -3), (2, 1), (3, 2)\}.\nonumber\]Find the value if it exists.

    1. \((f \circ g)(3)\)
    2. \(f(g(-1))\)
    3. \((f \circ f)(0)\)
    4. \((f \circ g)(-3)\)
    5. \((g \circ f)(3)\)
    6. \(g(f(-3))\)
    7. \((g \circ g)(-2)\)
    8. \((g \circ f)(-2)\)
    9. \(g(f(g(0)))\)
    10. \(f(f(f(-1)))\)
    11. \(f(f(f(f(f(1)))))\)
    12. \(\underbrace{(g \circ g \circ \cdots \circ g)}_{n \text { times }}(0)\)

    In Exercises 56 - 61, use the graphs of \(y=f(x)\) and \(y=g(x)\) below to find the function value.

    Screen Shot 2022-04-01 at 4.06.52 AM.png

    1. \((g\circ f)(1)\)
    2. \((f \circ g)(3)\)
    3. \((g\circ f)(2)\)
    4. \((f\circ g)(0)\)
    5. \((f\circ f)(1)\)
    6. \((g \circ g)(1)\)
    7. The volume \(V\) of a cube is a function of its side length \(x\). Let’s assume that \(x = t + 1\) is also a function of time \(t\), where \(x\) is measured in inches and \(t\) is measured in minutes. Find a formula for \(V\) as a function of \(t\).
    8. Suppose a local vendor charges \(\$2\) per hot dog and that the number of hot dogs sold per hour \(x\) is given by \(x(t) = -4t^2+20t+92\), where \(t\) is the number of hours since \(10\) AM, \(0 \leq t \leq 4\).
      1. Find an expression for the revenue per hour \(R\) as a function of \(x\).
      2. Find and simplify \(\left(R \circ x\right)(t)\). What does this represent?
      3. What is the revenue per hour at noon?
    9. Discuss with your classmates how ‘real-world’ processes such as filling out federal income tax forms or computing your final course grade could be viewed as a use of function composition. Find a process for which composition with itself (iteration) makes sense.

    Answers

    1. For \(f(x) = x^2\) and \(g(x) = 2x+1\),
      • \((g\circ f)(0) = 1\)
      • \((f\circ g)(-1) = 1\)
      • \((f \circ f)(2) = 16\)
      • \((g\circ f)(-3) = 19\)
      • \((f\circ g)\left(\dfrac{1}{2}\right) = 4\)
      • \((f \circ f)(-2) = 16\)
    2. For \(f(x) = 4-x\) and \(g(x) = 1-x^2\),
      • \((g\circ f)(0) = -15\)
      • \((f\circ g)(-1) = 4\)
      • \((f \circ f)(2) = 2\)
      • \((g\circ f)(-3) = -48\)
      • \((f\circ g)\left(\dfrac{1}{2}\right) = \dfrac{13}{4}\)
      • \((f \circ f)(-2) = -2\)
    3. For \(f(x) = 4-3x\) and \(g(x) = |x|\),
      • \((g\circ f)(0) = 4\)
      • \((f\circ g)(-1) = 1\)
      • \((f \circ f)(2) = 10\)
      • \((g\circ f)(-3) = 13\)
      • \((f\circ g)\left(\dfrac{1}{2}\right) = \dfrac{5}{2}\)
      • \((f \circ f)(-2) = -26\)
    4. For \(f(x) = |x-1|\) and \(g(x) = x^2-5\),
      • \((g\circ f)(0) = -4\)
      • \((f\circ g)(-1) = 5\)
      • \((f \circ f)(2) = 0\)
      • \((g\circ f)(-3) = 11\)
      • \((f\circ g)\left(\dfrac{1}{2}\right) = \dfrac{23}{4}\)
      • \((f \circ f)(-2) = 2\)
    5. For \(f(x) = 4x+5\) and \(g(x) = \sqrt{x}\),
      • \((g\circ f)(0) = \sqrt{5}\)
      • \((f\circ g)(-1)\) is not real
      • \((f \circ f)(2) = 57\)
      • \((g\circ f)(-3)\) is not real
      • \((f\circ g)\left(\dfrac{1}{2}\right) = 5+2\sqrt{2}\)
      • \((f \circ f)(-2) = -7\)
    6. For \(f(x) = \sqrt{3-x}\) and \(g(x) = x^2+1\),
      • \((g\circ f)(0) = 4\)
      • \((f\circ g)(-1) = 1\)
      • \((f \circ f)(2) = \sqrt{2}\)
      • \((g\circ f)(-3) = 7\)
      • \((f\circ g)\left(\dfrac{1}{2}\right) = \dfrac{\sqrt{7}}{2}\)
      • \((f \circ f)(-2) = \sqrt{3 - \sqrt{5}}\)
    7. For \(f(x) = 6-x-x^2\) and \(g(x) = x\sqrt{x+10}\),
      • \((g\circ f)(0) = 24\)
      • \((f\circ g)(-1) = 0\)
      • \((f \circ f)(2) = 6\)
      • \((g\circ f)(-3) = 0\)
      • \((f\circ g)\left(\dfrac{1}{2}\right) = \dfrac{27-2\sqrt{42}}{8}\)
      • \((f \circ f)(-2) = -14\)
    8. For \(f(x) = \sqrt[3]{x+1}\) and \(g(x) = 4x^2-x\),
      • \((g\circ f)(0) = 3\)
      • \((f\circ g)(-1) = \sqrt[3]{6}\)
      • \((f \circ f)(2) = \sqrt[3]{\sqrt[3]{3}+1}\)
      • \((g\circ f)(-3) = 4\sqrt[3]{4}+\sqrt[3]{2}\)
      • \((f\circ g)\left(\dfrac{1}{2}\right) = \dfrac{\sqrt[3]{12}}{2}\)
      • \((f \circ f)(-2) = 0\)
    9. For \(f(x) = \dfrac{3}{1-x}\) and \(g(x) = \dfrac{4x}{x^2+1}\),
      • \((g\circ f)(0) = \dfrac{6}{5}\)
      • \((f\circ g)(-1) = 1\)
      • \((f \circ f)(2) = \dfrac{3}{4}\)
      • \((g\circ f)(-3) = \dfrac{48}{25}\)
      • \((f\circ g)\left(\dfrac{1}{2}\right) = -5\)
      • \((f \circ f)(-2)\) is undefined
    10. For \(f(x) = \dfrac{x}{x+5}\) and \(g(x) = \dfrac{2}{7-x^2}\),
      • \((g\circ f)(0) = \dfrac{2}{7}\)
      • \((f\circ g)(-1) = \dfrac{1}{16}\)
      • \((f \circ f)(2) = \dfrac{2}{37}\)
      • \((g\circ f)(-3) = \dfrac{8}{19}\)
      • \((f\circ g)\left(\dfrac{1}{2}\right) = \dfrac{8}{143}\)
      • \((f \circ f)(-2) = -\dfrac{2}{13}\)
    11. For \(f(x) = \dfrac{2x}{5-x^2}\) and \(g(x) = \sqrt{4x+1}\),
      • \((g\circ f)(0) = 1\)
      • \((f\circ g)(-1)\) is not real
      • \((f \circ f)(2) = -\dfrac{8}{11}\)
      • \((g\circ f)(-3) = \sqrt{7}\)
      • \((f\circ g)\left(\dfrac{1}{2}\right) = \sqrt{3}\)
      • \((f \circ f)(-2) = \dfrac{8}{11}\)
    12. For \(f(x) =\sqrt{2x+5}\) and \(g(x) = \dfrac{10x}{x^2+1}\),
      • \((g\circ f)(0) = \dfrac{5\sqrt{5}}{3}\)
      • \((f\circ g)(-1)\) is not real
      • \((f \circ f)(2) = \sqrt{11}\)
      • \((g\circ f)(-3)\) is not real
      • \((f\circ g)\left(\dfrac{1}{2}\right) = \sqrt{13}\)
      • \((f \circ f)(-2) = \sqrt{7}\)
    13. For \(f(x) = 2x+3\) and \(g(x) = x^2-9\)
      • \((g \circ f)(x) = 4x^2+12x\), domain: \((-\infty, \infty)\)
      • \((f \circ g)(x) = 2x^2-15\), domain: \((-\infty, \infty)\)
      • \((f \circ f)(x) = 4x+9\), domain: \((-\infty, \infty)\)
    14. For \(f(x) = x^2 -x+1\) and \(g(x) = 3x-5\)
      • \((g \circ f)(x) = 3x^2-3x-2\), domain: \((-\infty, \infty)\)
      • \((f \circ g)(x) =9x^2-33x+31\), domain: \((-\infty, \infty)\)
      • \((f \circ f)(x) = x^4-2x^3+2x^2-x+1\), domain: \((-\infty, \infty)\)
    15. For \(f(x) = x^2-4\) and \(g(x) = |x|\)
      • \((g \circ f)(x) = |x^2-4|\), domain: \((-\infty, \infty)\)
      • \((f \circ g)(x) =|x|^2-4 = x^2-4\), domain: \((-\infty, \infty)\)
      • \((f \circ f)(x) =x^4-8x^2+12\), domain: \((-\infty, \infty)\)
    16. For \(f(x) = 3x-5\) and \(g(x) = \sqrt{x}\)
      • \((g \circ f)(x) = \sqrt{3x-5}\), domain: \(\left[ \dfrac{5}{3}, \infty \right)\)
      • \((f \circ g)(x) = 3\sqrt{x}-5\), domain: \([0,\infty)\)
      • \((f \circ f)(x) = 9x-20\), domain: \((-\infty, \infty)\)
    17. For \(f(x) = |x+1|\) and \(g(x) = \sqrt{x}\)
      • \((g \circ f)(x) = \sqrt{|x+1|}\), domain: \((-\infty, \infty)\)
      • \((f \circ g)(x) = |\sqrt{x}+1| = \sqrt{x}+1\), domain: \([0,\infty)\)
      • \((f \circ f)(x) = ||x+1|+1| = |x+1|+1\), domain: \((-\infty, \infty)\)
    18. For \(f(x) = 3-x^2\) and \(g(x) = \sqrt{x+1}\)
      • \((g \circ f)(x) = \sqrt{4-x^2}\), domain: \([-2,2]\)
      • \((f \circ g)(x) =2-x\), domain: \([-1, \infty)\)
      • \((f \circ f)(x) = -x^4+6x^2-6\), domain: \((-\infty, \infty)\)
    19. For \(f(x) = |x|\) and \(g(x) = \sqrt{4-x}\)
      • \((g \circ f)(x) = \sqrt{4-|x|}\), domain: \([-4,4]\)
      • \((f \circ g)(x) =|\sqrt{4-x}| = \sqrt{4-x}\), domain: \((-\infty, 4]\)
      • \((f \circ f)(x) = | |x| | = |x|\), domain: \((-\infty, \infty)\)
    20. For \(f(x) = x^2-x-1\) and \(g(x) = \sqrt{x-5}\)
      • \((g \circ f)(x) = \sqrt{x^2-x-6}\), domain: \((-\infty, -2] \cup [3,\infty)\)
      • \((f \circ g)(x) =x-6-\sqrt{x-5}\), domain: \([5,\infty)\)
      • \((f \circ f)(x) =x^4-2x^3-2x^2+3x+1\), domain: \((-\infty, \infty)\)
    21. For \(f(x) = 3x-1\) and \(g(x) = \dfrac{1}{x+3}\)
      • \((g \circ f)(x) = \dfrac{1}{3x+2}\), domain: \(\left(-\infty, -\dfrac{2}{3}\right) \cup \left(-\dfrac{2}{3}, \infty\right)\)
      • \((f \circ g)(x) = -\dfrac{x}{x+3}\), domain: \(\left(-\infty, -3\right) \cup \left(-3, \infty\right)\)
      • \((f \circ f)(x) = 9x-4\), domain: \((-\infty, \infty)\)
    22. For \(f(x) = \dfrac{3x}{x-1}\) and \(g(x) =\dfrac{x}{x-3}\)
      • \((g \circ f)(x) =x\), domain: \(\left(-\infty, 1\right) \cup (1, \infty)\)
      • \((f \circ g)(x) =x\), domain: \(\left(-\infty, 3\right) \cup (3,\infty)\)
      • \((f \circ f)(x) = \dfrac{9x}{2x+1}\), domain: \(\left(-\infty, -\dfrac{1}{2}\right) \cup \left(-\dfrac{1}{2}, 1 \right) \cup \left(1,\infty \right)\)
    23. For \(f(x) = \dfrac{x}{2x+1}\) and \(g(x) = \dfrac{2x+1}{x}\)
      • \((g \circ f)(x) = \dfrac{4x+1}{x}\), domain: \(\left(-\infty, -\dfrac{1}{2}\right) \cup \left(-\dfrac{1}{2}, 0), \cup (0, \infty\right)\)
      • \((f \circ g)(x) = \dfrac{2x+1}{5x+2}\), domain: \(\left(-\infty, -\dfrac{2}{5}\right) \cup \left(-\dfrac{2}{5}, 0\right) \cup (0,\infty)\)
      • \((f \circ f)(x) = \dfrac{x}{4x+1}\), domain: \(\left(-\infty, -\dfrac{1}{2}\right) \cup \left(-\dfrac{1}{2}, -\dfrac{1}{4} \right) \cup \left(-\dfrac{1}{4},\infty\right)\)
    24. For \(f(x) = \dfrac{2x}{x^2-4}\) and \(g(x) =\sqrt{1-x}\)
      • \((g \circ f)(x) =\sqrt{\dfrac{x^2-2x-4}{x^2-4}}\), domain: \(\left(-\infty, -2\right) \cup \left[1-\sqrt{5}, 2\right) \cup \left[1+\sqrt{5}, \infty\right)\)
      • \((f \circ g)(x) = -\dfrac{2\sqrt{1-x}}{x+3}\), domain: \(\left(-\infty, -3\right) \cup \left(-3, 1\right]\)
      • \((f \circ f)(x) = \dfrac{4x-x^3}{x^4-9x^2+16}\), domain: \(\left(-\infty, -\dfrac{1+\sqrt{17}}{2}\right) \cup \left(-\dfrac{1+\sqrt{17}}{2}, -2\right) \cup \left(-2, \dfrac{1-\sqrt{17}}{2}\right) \cup \left(\dfrac{1-\sqrt{17}}{2}, \dfrac{-1+\sqrt{17}}{2}\right) \cup \left(\dfrac{-1+\sqrt{17}}{2}, 2\right) \cup \left(2, \dfrac{1+\sqrt{17}}{2} \right) \cup \left(\dfrac{1+\sqrt{17}}{2}, \infty\right)\)
    25. \((h\circ g \circ f)(x)= |\sqrt{-2x}|= \sqrt{-2x}\), domain: \((-\infty, 0]\)
    26. \((h\circ f \circ g)(x) = |-2\sqrt{x}|= 2\sqrt{x}\), domain: \([0,\infty)\)
    27. \((g\circ f \circ h)(x) = \sqrt{-2|x|}\), domain: \(\{0\}\)
    28. \((g\circ h \circ f)(x) = \sqrt{|-2x|} = \sqrt{2|x|}\), domain: \((-\infty, \infty)\)
    29. \((f\circ h \circ g)(x) = -2|\sqrt{x}| = -2\sqrt{x}\), domain: \([0,\infty)\)
    30. \((f\circ g \circ h)(x) = -2\sqrt{|x|}\), , domain: \((-\infty,\infty)\)
    31. Let \(f(x) = 2x+3\) and \(g(x) = x^3\), then \(p(x) = (g\circ f)(x)\).
    32. Let \(f(x) = x^2-x+1\) and \(g(x) = x^5\), \(P(x) =(g\circ f)(x)\).
    33. Let \(f(x) = 2x-1\) and \(g(x) = \sqrt{x}\), then \(h(x) = (g\circ f)(x)\).
    34. Let \(f(x) = 7-3x\) and \(g(x) = |x|\), then \(H(x) = (g\circ f)(x)\).
    35. Let \(f(x) = 5x+1\) and \(g(x) = \dfrac{2}{x}\), then \(r(x) =(g\circ f)(x)\).
    36. Let \(f(x) = x^2-1\) and \(g(x) = \dfrac{7}{x}\), then \(R(x) =(g\circ f)(x)\).
    37. Let \(f(x) = |x|\) and \(g(x) = \dfrac{x+1}{x-1}\), then \(q(x) =(g\circ f)(x)\).
    38. Let \(f(x) = x^3\) and \(g(x)= \dfrac{2x+1}{x-1}\), then \(Q(x) =(g\circ f)(x)\).
    39. Let \(f(x) =2x\) and \(g(x) = \dfrac{x+1}{3-2x}\), then \(v(x) =(g\circ f)(x)\).
    40. Let \(f(x) = x^2\) and \(g(x) = \dfrac{x}{x^2+1}\), then \(w(x) =(g\circ f)(x)\).
    41. \(F(x) = \sqrt{\dfrac{x^{3} + 6}{x^{3} - 9}} = (h(g(f(x)))\) where \(f(x) = x^{3}, \, g(x) = \dfrac{x + 6}{x - 9}\) and \(h(x) = \sqrt{x}\).
    42. \(F(x) = 3\sqrt{-x + 2} - 4 = k(j(f(h(g(x)))))\)
    43. One possible solution is \(F(x) = -\dfrac{1}{2}(2x - 7)^{3} + 1 = k(j(f(h(g(x)))))\) where \(g(x) = 2x, \, h(x) = x - 7, \, j(x) = -\dfrac{1}{2}x\) and \(k(x) = x + 1\). You could also have \(F(x) = H(f(G(x)))\) where \(G(x) = 2x - 7\) and \(H(x) = -\dfrac{1}{2}x + 1\).
    44. \((f \circ g)(3)= f(g(3)) = f(2) = 4\)
    45. \(f(g(-1)) = f(-4)\) which is undefined
    46. \((f \circ f)(0) = f(f(0)) = f(1) = 3\)
    47. \((f \circ g)(-3) = f(g(-3)) = f(-2) = 2\)
    48. \((g \circ f)(3) = g(f(3)) = g(-1) = -4\)
    49. \(g(f(-3)) = g(4)\) which is undefined
    50. \((g \circ g)(-2) = g(g(-2)) = g(0) = 0\)
    51. \((g \circ f)(-2) = g(f(-2)) = g(2) = 1\)
    52. \(g(f(g(0))) = g(f(0)) = g(1) = -3\)
    53. \(f(f(f(-1))) = f(f(0)) = f(1) = 3\)
    54. \(f(f(f(f(f(1))))) = f(f(f(f(3)))) =\\ f(f(f(-1))) = f(f(0)) = f(1) = 3\)
    55. \(\underbrace{(g \circ g \circ \cdots \circ g)}_{n \text { times }}(0)=0\)
    56. \((g\circ f)(1) = 3\)
    57. \((f \circ g)(3) = 4\)
    58. \((g\circ f)(2) = 0\)
    59. \((f\circ g)(0) = 4\)
    60. \((f\circ f)(1) = 3\)
    61. \((g \circ g)(1) = 0\)
    62. \(V(x) = x^{3}\) so \(V(x(t)) = (t + 1)^{3}\)
      1. \(R(x) = 2x\)
      2. \(\left(R \circ x \right)(t) = -8t^2+40t+184\), \(0 \leq t \leq 4\). This gives the revenue per hour as a function of time.
      3. Noon corresponds to \(t=2\), so \(\left(R \circ x \right)(2) = 232\). The hourly revenue at noon is \(\$232\) per hour.

    5.1E: Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?